scispace - formally typeset
Search or ask a question

Showing papers on "Wireless Routing Protocol published in 2017"


Proceedings ArticleDOI
22 May 2017
TL;DR: This paper presents the first taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale attacks, targeting individual nodes, and large-scale attack, targeting the network as a whole, and demonstrates the feasibility of each attack against the deployed Bitcoin software.
Abstract: As the most successful cryptocurrency to date, Bitcoin constitutes a target of choice for attackers. While many attack vectors have already been uncovered, one important vector has been left out though: attacking the currency via the Internet routing infrastructure itself. Indeed, by manipulating routing advertisements (BGP hijacks) or by naturally intercepting traffic, Autonomous Systems (ASes) can intercept and manipulate a large fraction of Bitcoin traffic.This paper presents the first taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale attacks, targeting individual nodes, and large-scale attacks, targeting the network as a whole. While challenging, we show that two key properties make routing attacks practical: (i) the efficiency of routing manipulation; and (ii) the significant centralization of Bitcoin in terms of mining and routing. Specifically, we find that any network attacker can hijack few (<100) BGP prefixes to isolate ∼50% of the mining power—even when considering that mining pools are heavily multi-homed. We also show that on-path network attackers can considerably slow down block propagation by interfering with few key Bitcoin messages.We demonstrate the feasibility of each attack against the deployed Bitcoin software. We also quantify their effectiveness on the current Bitcoin topology using data collected from a Bitcoin supernode combined with BGP routing data. The potential damage to Bitcoin is worrying. By isolating parts of the network or delaying block propagation, attackers can cause a significant amount of mining power to be wasted, leading to revenue losses and enabling a wide range of exploits such as double spending. To prevent such effects in practice, we provide both short and long-term countermeasures, some of which can be deployed immediately.

362 citations


Journal ArticleDOI
TL;DR: This paper surveys the variants of LEACH routing protocols proposed so far and discusses the enhancement and working of them, and makes suggestions on future research domains in the area of WSN.
Abstract: Even after 16 years of existence, low energy adaptive clustering hierarchy (LEACH) protocol is still gaining the attention of the research community working in the area of wireless sensor network (WSN). This itself shows the importance of this protocol. Researchers have come up with various and diverse modifications of the LEACH protocol. Successors of LEACH protocol are now available from single hop to multi-hop scenarios. Extensive work has already been done related to LEACH and it is a good idea for a new research in the field of WSN to go through LEACH and its variants over the years. This paper surveys the variants of LEACH routing protocols proposed so far and discusses the enhancement and working of them. This survey classifies all the protocols in two sections, namely, single hop communication and multi-hop communication based on data transmission from the cluster head to the base station. A comparitive analysis using nine different parameters, such as energy efficiency, overhead, scalability complexity, and so on, has been provided in a chronological fashion. The article also discusses the strong and the weak points of each and every variants of LEACH. Finally the paper concludes with suggestions on future research domains in the area of WSN.

302 citations


Journal ArticleDOI
TL;DR: A comprehensive survey of position-based routing protocols for FANETs with their various categories is proposed, including a classification and a taxonomy of these protocols, and a detailed description of the routing schemes used in each category.

223 citations


Journal ArticleDOI
TL;DR: Results of a preliminary investigation into design issues affecting the development of strategic multipath routing protocols that support multimedia data in WMSNs are presented and discussed from the network application perspective.
Abstract: The vision of wireless multimedia sensor networks (WMSNs) is to provide real-time multimedia applications using wireless sensors deployed for long-term usage. Quality of service assurances for both best effort data and real-time multimedia applications introduced new challenges in prioritizing multipath routing protocols in WMSNs. Multipath routing approaches with multiple constraints have received considerable research interest. In this paper, a comprehensive survey of both best effort data and real-time multipath routing protocols for WMSNs is presented. Results of a preliminary investigation into design issues affecting the development of strategic multipath routing protocols that support multimedia data in WMSNs are also presented and discussed from the network application perspective.

195 citations


Journal ArticleDOI
TL;DR: This work proposes a novel approach that introduces moving object modeling and indexing techniques from the theory of large moving object databases into the design of VANET routing protocols and demonstrates the superiority of this approach compared with both clustering and non-clustering based routing protocols.
Abstract: Vehicular Ad-hoc Networks (VANETs) are an emerging field, whereby vehicle-to-vehicle communications can enable many new applications such as safety and entertainment services. Most VANET applications are enabled by different routing protocols. The design of such routing protocols, however, is quite challenging due to the dynamic nature of nodes (vehicles) in VANETs. To exploit the unique characteristics of VANET nodes, we design a moving-zone based architecture in which vehicles collaborate with one another to form dynamic moving zones so as to facilitate information dissemination. We propose a novel approach that introduces moving object modeling and indexing techniques from the theory of large moving object databases into the design of VANET routing protocols. The results of extensive simulation studies carried out on real road maps demonstrate the superiority of our approach compared with both clustering and non-clustering based routing protocols.

193 citations


Journal ArticleDOI
TL;DR: Simulation results show that new ant algorithm can effectively save the energy of nodes and prolong the network lifetime.
Abstract: How to make efficient data routing in energy constrained wireless sensor networks (WSNs) is one of the key points. In order to find the optimal path of data transmission in the WSNs, a new routing algorithm based on ant colony algorithm is proposed. Using the improved heuristic function and considering the node communication transmission distance, transmission direction, and residual energy, an optimal path from the source node to the destination node can be found. Thus, the network energy consumption is reduced and the network lifetime is prolonged. Simulation results show that new ant algorithm can effectively save the energy of nodes and prolong the network lifetime.

163 citations


Journal ArticleDOI
TL;DR: This paper mathematically formulate the routing selection issue as a constrained optimization problem and proposes an ant colony optimization (ACO)-based algorithm to solve this problem, and a terminal intersection (TI) concept is presented to decrease routing exploration time and alleviate network congestion.
Abstract: Developing highly efficient routing protocols for vehicular ad hoc networks (VANETs) is a challenging task, mainly due to the special characters of such networks: large-scale sizes, frequent link disconnections, and rapid topology changes. In this paper, we propose an adaptive quality-of-service (QoS)-based routing for VANETs called AQRV. This new routing protocol adaptively chooses the intersections through which data packets pass to reach the destination, and the selected route should satisfy the QoS constraints and fulfil the best QoS in terms of three metrics, namely connectivity probability, packet delivery ratio (PDR), and delay. To achieve the given objectives, we mathematically formulate the routing selection issue as a constrained optimization problem and propose an ant colony optimization (ACO)-based algorithm to solve this problem. In addition, a terminal intersection (TI) concept is presented to decrease routing exploration time and alleviate network congestion. Moreover, to decrease network overhead, we propose local QoS models (LQMs) to estimate real time and complete QoS of urban road segments. Simulation results validate our derived LQM models and show the effectiveness of AQRV.

151 citations


Journal ArticleDOI
TL;DR: The results clearly demonstrate that the proposed FF-AOMDV outperformed AomDV and AOMR-LM under majority of the network performance metrics and parameters.
Abstract: Mobile ad hoc network (MANET) is a collection of wireless mobile nodes that dynamically form a temporary network without the reliance of any infrastructure or central administration Energy consumption is considered as one of the major limitations in MANET, as the mobile nodes do not possess permanent power supply and have to rely on batteries, thus reducing network lifetime as batteries get exhausted very quickly as nodes move and change their positions rapidly across MANET This paper highlights the energy consumption in MANET by applying the fitness function technique to optimize the energy consumption in ad hoc on demand multipath distance vector (AOMDV) routing protocol The proposed protocol is called AOMDV with the fitness function (FF-AOMDV) The fitness function is used to find the optimal path from source node to destination node to reduce the energy consumption in multipath routing The performance of the proposed FF-AOMDV protocol has been evaluated by using network simulator version 2, where the performance was compared with AOMDV and ad hoc on demand multipath routing with life maximization (AOMR-LM) protocols, the two most popular protocols proposed in this area The comparison was evaluated based on energy consumption, throughput, packet delivery ratio, end-to-end delay, network lifetime and routing overhead ratio performance metrics, varying the node speed, packet size, and simulation time The results clearly demonstrate that the proposed FF-AOMDV outperformed AOMDV and AOMR-LM under majority of the network performance metrics and parameters

150 citations


Journal ArticleDOI
01 Apr 2017
TL;DR: The goal of the work is to provide the references and guidelines for readers approaching study on the new area of information-centric mobile ad hoc networks, a new cross-cutting research area.
Abstract: As the future Internet architecture, information centric networking(ICN) can also offer superior architectural support for mobile ad hoc networking. Therefore, information-centric mobile ad hoc networks (ICMANET), a new cross-cutting research area, is gradually forming. In the paper, we firstly introduce the current advances in ICN and analyze its development trends, and then interpret the formation of ICMANET and sketch an overview of it. Subsequently, we define a concept model for content routing and categorize the content routing into proactive, reactive and opportunistic types, and then detail the representative schemes. Finally, the existing issues are summarized. The goal of the work is to provide the references and guidelines for readers approaching study on the new area.

145 citations


Journal ArticleDOI
TL;DR: This paper studies how UAVs operating in ad hoc mode can cooperate with VANET on the ground so as to assist in the routing process and improve the reliability of the data delivery by bridging the communication gap whenever it is possible.

145 citations


Posted Content
TL;DR: A Deep-Reinforcement Learning agent that optimizes routing that adapts automatically to current traffic conditions and proposes tailored configurations that attempt to minimize the network delay is designed and evaluated.
Abstract: In this paper we design and evaluate a Deep-Reinforcement Learning agent that optimizes routing. Our agent adapts automatically to current traffic conditions and proposes tailored configurations that attempt to minimize the network delay. Experiments show very promising performance. Moreover, this approach provides important operational advantages with respect to traditional optimization algorithms.

Journal ArticleDOI
TL;DR: This paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs and presents a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications.
Abstract: Introducing mobility to Wireless Sensor Networks (WSNs) puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs). Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

Journal ArticleDOI
TL;DR: This work proposes a combined omnidirectional and directional transmission scheme, together with dynamic angle adjustment, which features hybrid use of unicasting and geocasting routing using location and trajectory information for flying ad hoc networks.
Abstract: Ever-increasing demands for portable and flexible communications have led to rapid growth in networking between unmanned aerial vehicles often referred to as flying ad-hoc networks (FANETs). Existing mobile ad hoc routing protocols are not suitable for FANETs due to high-speed mobility, environmental conditions, and terrain structures. In order to overcome such obstacles, we propose a combined omnidirectional and directional transmission scheme, together with dynamic angle adjustment. Our proposed scheme features hybrid use of unicasting and geocasting routing using location and trajectory information. The prediction of intermediate node location using 3-D estimation and directional transmission toward the predicted location, enabling a longer transmission range, allows keeping track of a changing topology, which ensures the robustness of our protocol. In addition, the reduction in path re-establishment and service disruption time to increase the path lifetime and successful packet transmissions ensures the reliability of our proposed strategy. Simulation results verify that our proposed scheme could significantly increase the performance of flying ad hoc networks.

Journal ArticleDOI
TL;DR: This paper proposes an energy-efficient multicast routing approach to multi-hop wireless networks for smart medical applications that makes use of topology control and sleeping mechanism to obtain the optimal routing strategy with maximum network energy efficiency.

Journal ArticleDOI
TL;DR: A survey of the existing single-layer and cross-layer routing techniques in VANETs is presented, emphasizing on cross- layer routing protocols that utilize information at the physical, medium access control and network layers as routing parameters.
Abstract: Vehicular ad-hoc networks (VANETs) play an important role in intelligent transportation systems for improving security and efficiency. However, due to dynamic characteristics of the vehicular environment, routing remains a significant challenge in the VANETs. While single-layer routing protocols based on the traditional layered open systems interconnection (OSI) model are readily available, they often do not make use of important parameters at the lower three layers of the OSI model when making routing decision. Hence, for making optimal routing decision to gain superior network performance, there is a need to design cross-layer routing that allows information exchange between layers. In this article, a survey of the existing single-layer and cross-layer routing techniques in VANETs is presented, emphasizing on cross-layer routing protocols that utilize information at the physical, medium access control and network layers as routing parameters. An overview and challenges of routing are given, followed by a brief discussion of single-layer routing with more focus on geographic routing. Cross-layer routing protocols are then discussed in detail. The article then elaborates on some advantages and disadvantages of the existing routing approaches, cross-layer routing parameter selection and cross-layer design issues. Finally, some open research challenges in developing efficient routing protocols in the VANETs are highlighted.

Journal ArticleDOI
TL;DR: The results demonstrate that the proposed CCMAR outperforms LEACH, PEGASIS and other similar routing algorithm, energy efficient cluster-chain based protocol.
Abstract: The sensor nodes have limited sensing, computation, communication capabilities and are mostly operated by batteries in a harsh environment with non-replenishable power sources. These restrictions make the sensor network prone to failures because most of the energy is spent on data transmission, sensing, and computing. Many applications such as habitat monitoring, military surveillance and forest fire detection expect the sensor nodes to last for a long time because they operate human unattended. Therefore, the major challenges in designing a wireless sensor network (WSN) are energy conservation, reducing data transmission delay and improving the network lifetime. In this context, data aggregation is an intelligent technique used in WSN, wherein the data from disparate sources are accumulated at intermediate nodes, thereby reducing the number of packets to be sent to the sink. Literature study shows that various routing algorithms are used to perform data aggregation based on the network topology. In order to provide an improved performance amongst the existing, a routing algorithm called cluster-chain mobile agent routing (CCMAR) is proposed in this work. It makes full use of the advantages of both low energy adaptive clustering hierarchy (LEACH) and power-efficient gathering in sensor information systems (PEGASIS). CCMAR divides the WSN into a few clusters and runs in two phases.The proposed system is simulated and evaluated for the performance metrics such as energy consumption, transmission delay and network lifetime. The results demonstrate that the proposed CCMAR outperforms LEACH, PEGASIS and other similar routing algorithm, energy efficient cluster-chain based protocol.

Journal ArticleDOI
TL;DR: Three algorithms are proposed: cluster-based life-time routing (CBLTR), Intersection dynamic VANET routing (IDVR) protocol, and control overhead reduction algorithm (CORA) that significantly outperform many protocols mentioned in the literature, in terms of many parameters.
Abstract: Vehicular ad-hoc NETworks (VANETs) have received considerable attention in recent years, due to its unique characteristics, which are different from mobile ad-hoc NETworks, such as rapid topology change, frequent link failure, and high vehicle mobility. The main drawback of VANETs network is the network instability, which yields to reduce the network efficiency. In this paper, we propose three algorithms: cluster-based life-time routing (CBLTR) protocol, Intersection dynamic VANET routing (IDVR) protocol, and control overhead reduction algorithm (CORA). The CBLTR protocol aims to increase the route stability and average throughput in a bidirectional segment scenario. The cluster heads (CHs) are selected based on maximum lifetime among all vehicles that are located within each cluster. The IDVR protocol aims to increase the route stability and average throughput, and to reduce end-to-end delay in a grid topology. The elected intersection CH receives a set of candidate shortest routes (SCSR) closed to the desired destination from the software defined network. The IDVR protocol selects the optimal route based on its current location, destination location, and the maximum of the minimum average throughput of SCSR. Finally, the CORA algorithm aims to reduce the control overhead messages in the clusters by developing a new mechanism to calculate the optimal numbers of the control overhead messages between the cluster members and the CH. We used SUMO traffic generator simulators and MATLAB to evaluate the performance of our proposed protocols. These protocols significantly outperform many protocols mentioned in the literature, in terms of many parameters.

Journal ArticleDOI
TL;DR: The energy consumption problem is addressed and an energy-efficient cooperative opportunistic routing (EECOR) protocol is proposed to forward the packets toward the surface sink to alleviate the packet collisions problem.
Abstract: Underwater acoustic sensor networks (UW-ASNs) have recently been proposed for exploring the underwater resources and gathering the scientific data from the aquatic environments. UW-ASNs are faced with different challenges, such as high propagation delay, low bandwidth, and high energy consumption. However, the most notable challenge is perhaps how to efficiently forward the packets to the surface sink by considering the energy constrained sensor devices. The opportunistic routing concept may provide an effective solution for the UW-ASNs by the cooperation of the relay nodes to forward the packets to the surface sink. In this paper, the energy consumption problem is addressed and an energy-efficient cooperative opportunistic routing (EECOR) protocol is proposed to forward the packets toward the surface sink. In the EECOR protocol, a forwarding relay set is firstly determined by the source node based on the local information of the forwarder and then, a fuzzy logic-based relay selection scheme is applied to select the best relay based on considering the energy consumption ratio and the packet delivery probability of the forwarder. In the UW-ASNs, most of the energy is wasted due to the collisions amongst sensor nodes during the packet transmission. To alleviate the packet collisions problem, we have designed a holding timer for each of the forwarder to schedule the packets transmission toward the surface sink. We have performed our extensive simulations of the EECOR protocol on the Aqua-sim platform and compared with existing routing protocols in terms of average packet delivery ratio, average end-to-end delay, average energy consumption, and average network lifetime.

Proceedings ArticleDOI
04 Oct 2017
TL;DR: This work presents a novel ILP formulation that can be used to jointly solve the routing and scheduling problem for time-triggered Ethernet networks and suggests that schedules computed with this formulation offer lower communication latencies.
Abstract: Networks in the automotive and aerospace area as well as in production facilities have to support time-critical (i.e., hard real-time) communication. For such applications, time-triggered Ethernet-based networking solutions provide the required timeliness, i.e., reliable packet delivery with deterministic latencies and low jitter. However, the routing and scheduling of the time-triggered traffic is an NP-hard problem. Hence, existing solutions to this problem make certain abstractions to reduce complexity if necessary. Nonetheless, such abstractions exclude feasible routing and scheduling options from the design space. Specifically, it is a typical approach to model routing and scheduling as separate problems, which are solved successively or with heuristic coupling. Therefore, we present a novel ILP formulation that can be used to jointly solve the routing and scheduling problem for time-triggered Ethernet networks. Using this formulation, it is possible to solve various scheduling problems that are infeasible when using a fixed shortest path routing with separate scheduling. Compared to a fixed load balanced routing with separate scheduling, schedules computed with our formulation offer lower communication latencies.

Journal ArticleDOI
TL;DR: The paper solves the problem of the premature end of network lifetime in applications where the base station (BS) is far from the Region Of Interest (ROI) and proposes two distributed, energy-efficient, and connectivity-aware routing protocols for solving the routing hole problem.

Journal ArticleDOI
TL;DR: An appropriate metric to measure the quality of WSN border crossing detection is identified and a method to calculate the required number of sensor nodes to deploy in order to achieve a specified level of coverage according to the chosen metric in a given belt region is proposed.
Abstract: External border surveillance is critical to the security of every state and the challenges it poses are changing and likely to intensify. Wireless sensor networks (WSN) are a low cost technology that provide an intelligence-led solution to effective continuous monitoring of large, busy, and complex landscapes. The linear network topology resulting from the structure of the monitored area raises challenges that have not been adequately addressed in the literature to date. In this paper, we identify an appropriate metric to measure the quality of WSN border crossing detection. Furthermore, we propose a method to calculate the required number of sensor nodes to deploy in order to achieve a specified level of coverage according to the chosen metric in a given belt region, while maintaining radio connectivity within the network. Then, we contribute a novel cross layer routing protocol, called levels division graph (LDG), designed specifically to address the communication needs and link reliability for topologically linear WSN applications. The performance of the proposed protocol is extensively evaluated in simulations using realistic conditions and parameters. LDG simulation results show significant performance gains when compared with its best rival in the literature, dynamic source routing (DSR). Compared with DSR, LDG improves the average end-to-end delays by up to 95%, packet delivery ratio by up to 20%, and throughput by up to 60%, while maintaining comparable performance in terms of normalized routing load and energy consumption.

Journal ArticleDOI
TL;DR: The proposed mesh based multipath routing scheme to discover all possible secure paths using secure adjacent position trust verification protocol and better link optimal path find by the Dolphin Echolocation Algorithm for efficient communication in MANET is proposed.
Abstract: A mobile ad hoc network (MANET) is a self-configurable network connected by wireless links. This type of network is only suitable for provisional communication links as it is infrastructure-less and there is no centralized control. Providing QoS and security aware routing is a challenging task in this type of network due to dynamic topology and limited resources. The main purpose of secure and trust based on-demand multipath routing is to find trust based secure route from source to destination which will satisfy two or more end to end QoS constraints. In this paper, the standard ad hoc on-demand multi-path distance vector protocol is extended as the base routing protocol to evaluate this model. The proposed mesh based multipath routing scheme to discover all possible secure paths using secure adjacent position trust verification protocol and better link optimal path find by the Dolphin Echolocation Algorithm for efficient communication in MANET. The performance analysis and numerical results show that our proposed routing protocol produces better packet delivery ratio, reduced packet delay, reduced overheads and provide security against vulnerabilities and attacks.

Journal ArticleDOI
TL;DR: This paper proposes path observation based physical routing protocol named POPR for WANET that incorporates relative distance, direction and mid-range forwarder node with traffic density to forward the data toward destination in order to improve physical forwarding between and at the intersection.
Abstract: Wireless ad hoc networks are going to be an emerged multi-hop communication exploit among mobiles to deliver data packets The special characteristics of Wireless network make the communication link between mobiles to be unreliable To handle high mobility and environmental obstacles, most of physical routing protocols do not consider stable links during packet transmission which lead to higher delay and packet dropping in network In this paper, we propose path observation based physical routing protocol named POPR for WANET The proposed routing protocol incorporates relative distance, direction and mid-range forwarder node with traffic density to forward the data toward destination in order to improve physical forwarding between and at the intersection Simulation results show that the proposed routing protocol performs better as compared to existing solutions

Journal ArticleDOI
TL;DR: A routing protocol is proposed for Wireless Sensor Networks which are heterogeneous and are based on the adaptive threshold sensitive distributed energy efficient cross layer routing protocol and the concept of weighted probability is used to assign the CH (Cluster Head) of the network cluster.
Abstract: Wireless Sensor Networks (WSNs) perform an important part in modern day communication as it can sense the various physical and environmental parameters by employing low cost sensor devices. The growth of the networks due to scientific advancements have altogether made it possible to create an energy efficient cross layer network that can improve its lifespan. In this paper, a routing protocol is proposed for the networks which are heterogeneous and are based on the adaptive threshold sensitive distributed energy efficient cross layer routing protocol. The concept of weighted probability is used to assign the CH (Cluster Head) of the network cluster. The proposed algorithm is simulated, tested and compared with previously established routing protocols and has shown enhanced results and prolonged network lifespan. In the proposed protocol, a combination of the proactive and reactive network is considered for effective data transmission.

Journal ArticleDOI
01 Jun 2017
TL;DR: A comparison of the performance of E-OCER with OCER is made to study the effect of on-body sensors communication on the energy consumption and throughput of the network and a comprehensive energy model is provided to calculate the total energy consumption.
Abstract: The increase in average lifespan and huge costs for health treatments have resulted in cost effective solutions for healthcare management. Wireless Body Area Network (WBAN) is a promising technology for delivering quality healthcare to its users. Low power devices attached to the body have limited battery life. It is desirable to have energy efficient routing protocols that maintain the required reliability value for sending the data from a given node to the sink. The current work proposes two protocols: Optimized Cost Effective and Energy Efficient Routing protocol (OCER) and Extended-OCER (E-OCER). In OCER, optimization using Genetic Algorithm (GA) is applied to the multi-objective cost function with residual energy, link reliability and path loss as its parameters for selecting the most optimal route from a given body coordinator to the sink. Distance between any two sensor nodes is reduced by applying multi-hop approach. E-OCER extends the work of OCER by considering inter-BAN communication. Performance of OCER is compared with other existing energy aware routing protocols by considering different parameters. A comparison of the performance of E-OCER with OCER is made to study the effect of on-body sensors communication on the energy consumption and throughput of the network. This paper also provides a comprehensive energy model to calculate the total energy consumption of the network. In addition to the radio transmission and receiving energy, other basic energy consumption sources viz. processing energy, sensor sensing, transient energy and transmission/reception on/off energy have also been taken into account. The results show an improved performance of the proposed protocols in terms of energy efficiency.

Journal ArticleDOI
TL;DR: Experimental results show that EA-CRP has superior performance in term of network lifetime, energy efficiency, and scalability.

Journal ArticleDOI
TL;DR: Simulations in MATLAB validate the methodology which has decreased the communication cost of sensor nodes and hence prolonged the network lifetime and has shown the improvement over CARP a routing protocol in terms of data packets transmission and energy.

Journal ArticleDOI
TL;DR: A geographical awareness approach that is applied to limit the discovered route area in ZRP is proposed and is called the Geographical awareness ZRP (GeoZRP), which alleviates routing overhead and end-to-end delay with only a slightly decrease in the packet delivery ratio.
Abstract: This paper proposes a geographical awareness routing protocol based on a hybrid routing protocol, the Zone Routing Protocol (ZRP), in Mobile Ad Hoc Networks (MANETs). ZRP is created from combining proactive routing protocol and on-demand routing protocol; therefore, it inherits the advantages of both these routing protocols. The long delay time of the on-demand routing protocol and the huge routing overhead of the proactive routing approach are reduced in ZRP. However, ZRP still produces a large amount of redundant routing overhead in the route discovery process, which not only wastes energy but also increases the workload of the network, while limited bandwidth is a challenge for MANETs. To mitigate routing overhead, a geographical awareness approach that is applied to limit the discovered route area in ZRP is proposed and is called the Geographical awareness ZRP (GeoZRP). Simulation results confirm that the proposed algorithm alleviates routing overhead and end-to-end delay with only a slightly decrease in the packet delivery ratio.

Journal ArticleDOI
TL;DR: A new routing protocol, called balanced energy adaptive routing (BEAR), is proposed, to prolong the lifetime of UWSNs and outperforms its counterpart protocols in terms of network lifetime.
Abstract: Applications of Internet of Things underwater wireless sensor networks, such as imaging underwater life, environmental monitoring, and supervising geological processes on the ocean floor, demand a prolonged network lifetime However, these networks face many challenges, such as high path loss, limited available bandwidth, limited battery power, and high attenuation For a longer network lifetime, both balanced and efficient energy consumption are equally important In this paper, we propose a new routing protocol, called balanced energy adaptive routing (BEAR), to prolong the lifetime of UWSNs The proposed BEAR protocol operates in three phases: 1) initialization phase; 2) tree construction phase; and 3) data transmission phase In the initialization phase, all nodes share information related to their residual energy level and location In the tree construction phase, our proposed BEAR exploits the location information for: a) selecting neighbour nodes and b) choosing the facilitating and successor nodes based on the value of cost function In order to balance the energy consumption among the successor and the facilitator nodes, BEAR chooses nodes with relatively higher residual energy than the average residual energy of the network The results of our extensive simulations show that BEAR outperforms its counterpart protocols in terms of network lifetime

Proceedings ArticleDOI
21 May 2017
TL;DR: This paper presents a new proposal to implement an intelligent routing protocol in a SDN topology based on the reinforcement learning process that allows choosing the best data transmission paths according to the best criteria andbased on the network status.
Abstract: Software defined network (SDN) is one of the most interesting research topic that is currently being investigated. The inclusion of artificial intelligence (AI) can improve the performance of routing protocols. Nowadays the application of AI over routing protocols is only applied to real devices, especially in wireless sensor nodes. In this paper, we present a new proposal to implement an intelligent routing protocol in a SDN topology. The intelligent routing protocol is based on the reinforcement learning process that allows choosing the best data transmission paths according to the best criteria and based on the network status.