scispace - formally typeset
Search or ask a question

Showing papers by "Abigail G. Vieregg published in 2020"


Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the universe at the highest energies.
Abstract: The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the universe at the highest energies. IceCube-Gen2 is designed to: 1) Resolve the high-energy neutrino sky from TeV to EeV energies; 2) Investigate cosmic particle acceleration through multi-messenger observations; 3) Reveal the sources and propagation of the highest energy particles in the universe; 4) Probe fundamental physics with high-energy neutrinos. IceCube-Gen2 will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about \$350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy universe. This challenging mission can be fully addressed only in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.

210 citations


Journal ArticleDOI
TL;DR: The Radio Neutrino Observatory Greenland (RNO-G) as mentioned in this paper is the first radio detector for in-ice neutrino signals, which uses an array of radio sensors to measure neutrinos above 10 PeV.
Abstract: This article presents the design of the Radio Neutrino Observatory Greenland (RNO-G) and discusses its scientific prospects. Using an array of radio sensors, RNO-G seeks to measure neutrinos above 10 PeV by exploiting the Askaryan effect in neutrino-induced cascades in ice. We discuss the experimental considerations that drive the design of RNO-G, present first measurements of the hardware that is to be deployed and discuss the projected sensitivity of the instrument. RNO-G will be the first production-scale radio detector for in-ice neutrino signals.

49 citations


Journal ArticleDOI
TL;DR: The Payload for Ultrahigh Energy Observations (PUEO) long-duration balloon experiment is designed to have world-leading sensitivity to ultrahigh-energy neutrinos at energies above 1 EeV.
Abstract: The Payload for Ultrahigh Energy Observations (PUEO) long-duration balloon experiment is designed to have world-leading sensitivity to ultrahigh-energy neutrinos at energies above 1 EeV. Probing this energy region is essential for understanding the extreme-energy universe at all distance scales. PUEO leverages experience from and supersedes the successful Antarctic Impulsive Transient Antenna (ANITA) program, with an improved design that drastically improves sensitivity by more than an order of magnitude at energies below 30 EeV. PUEO will either make the first significant detection of or set the best limits on ultrahigh-energy neutrino fluxes.

48 citations


Journal ArticleDOI
TL;DR: NuRadioMC as discussed by the authors is a Monte Carlo framework designed to simulate ultra-high energy neutrino detectors that rely on the radio detection method, which exploits the radio emission generated in the electromagnetic component of a particle shower following a Neutrino interaction.
Abstract: NuRadioMC is a Monte Carlo framework designed to simulate ultra-high energy neutrino detectors that rely on the radio detection method. This method exploits the radio emission generated in the electromagnetic component of a particle shower following a neutrino interaction. NuRadioMC simulates everything from the neutrino interaction in a medium, the subsequent Askaryan radio emission, the propagation of the radio signal to the detector and finally the detector response. NuRadioMC is designed as a modern, modular Python-based framework, combining flexibility in detector design with user-friendliness. It includes a state-of-the-art event generator, an improved modelling of the radio emission, a revisited approach to signal propagation and increased flexibility and precision in the detector simulation. This paper focuses on the implemented physics processes and their implications for detector design. A variety of models and parameterizations for the radio emission of neutrino-induced showers are compared and reviewed. Comprehensive examples are used to discuss the capabilities of the code and different aspects of instrumental design decisions.

44 citations


Journal ArticleDOI
TL;DR: In this article, the authors present constraints on the diffuse flux of ultra-high energy neutrinos between 1016 and 1021 ǫ eV resulting from a search for neutrino in two complementary analyses.
Abstract: The Askaryan Radio Array (ARA) is an ultrahigh energy (UHE, >1017 eV) neutrino detector designed to observe neutrinos by searching for the radio waves emitted by the relativistic products of neutrino-nucleon interactions in Antarctic ice. In this paper, we present constraints on the diffuse flux of ultrahigh energy neutrinos between 1016 and 1021 eV resulting from a search for neutrinos in two complementary analyses, both analyzing four years of data (2013–2016) from the two deep stations (A2, A3) operating at that time. We place a 90% CL upper limit on the diffuse all flavor neutrino flux at 1018 eV of EF(E)=5.6×10-16 cm-2 s-1 sr-1. This analysis includes four times the exposure of the previous ARA result and represents approximately 1/5th the exposure expected from operating ARA until the end of 2022.

42 citations


Proceedings ArticleDOI
TL;DR: The Bicep/Keck Array (BK) program targets the degree angular scales, where the power from primordial B-mode polarization is expected to peak, with ever increasing sensitivity and has published the most stringent constraints on inflation to date as discussed by the authors.
Abstract: A detection of curl-type (B-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The Bicep/Keck Array (BK) program targets the degree angular scales, where the power from primordial B-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. Bicep Array (BA) is the Stage-3 instrument of the BK program and will comprise four Bicep3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale B-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full Bicep Array instrument is projected to reach σr between 0.002 and 0.004, depending on foreground complexity and degree of removal of B-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.

35 citations


Journal ArticleDOI
Abstract: Tau neutrinos are expected to comprise roughly one third of both the astrophysical and cosmogenic neutrino flux, but currently the flavor ratio is poorly constrained and the expected flux at energies above 1017 eV is low. We present a detector concept aimed at measuring the diffuse flux of tau neutrinos in this energy range via a high-elevation mountaintop detector using the radio technique. The detector searches for radio signals from upgoing air showers generated by Earth-skimming tau neutrinos. Signals from several antennas in a compact array are coherently summed at the trigger level, permitting not only directional masking of anthropogenic backgrounds, but also a low trigger threshold. This design takes advantage of both the large viewing area available at high-elevation sites and the nearly full duty cycle available to radio instruments. We present trade studies that consider the station elevation, frequency band, number of antennas in the array, and the trigger threshold to develop a highly efficient station design. Such a mountaintop detector can achieve a factor of ten improvement in acceptance over existing instruments with 100 independent stations. With 1000 stations and three years of observation, it can achieve a sensitivity to an integrated −2 flux of <10−9 GeV cm−2 sr−1 s−1, in the range of the expected flux of all-flavor cosmogenic neutrinos assuming a pure iron cosmic-ray composition.

24 citations


Journal ArticleDOI
TL;DR: In this article, a high-elevation mountaintop detector using the radio technique was proposed to measure the diffuse flux of tau neutrinos in this energy range.
Abstract: Tau neutrinos are expected to comprise roughly one third of both the astrophysical and cosmogenic neutrino flux, but currently the flavor ratio is poorly constrained and the expected flux at energies above $10^{17}$ eV is low. We present a detector concept aimed at measuring the diffuse flux of tau neutrinos in this energy range via a high-elevation mountaintop detector using the radio technique. The detector searches for radio signals from upgoing air showers generated by Earth-skimming tau neutrinos. Signals from several antennas in a compact array are coherently summed at the trigger level, permitting not only directional masking of anthropogenic backgrounds, but also a low trigger threshold. This design takes advantage of both the large viewing area available at high-elevation sites and the nearly full duty cycle available to radio instruments. We present trade studies that consider the station elevation, frequency band, number of antennas in the array, and the trigger threshold to develop a highly efficient station design. Such a mountaintop detector can achieve a factor of ten improvement in acceptance over existing instruments with 100 independent stations. With 1000 stations and three years of observation, it can achieve a sensitivity to an integrated $\mathcal{E}^{-2}$ flux of $<10^{-9}$ GeV cm$^{-2}$ sr$^{-1}$ s$^{-1}$, in the range of the expected flux of all-flavor cosmogenic neutrinos assuming a pure iron cosmic-ray composition.

20 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe an on-sky demonstration of a microwave-multiplexing readout system in one of the receivers of the Keck Array, a polarimetry experiment observing the cosmic microwave background at the South Pole.
Abstract: We describe an on-sky demonstration of a microwave-multiplexing readout system in one of the receivers of the Keck Array, a polarimetry experiment observing the cosmic microwave background at the South Pole. During the austral summer of 2018–2019, we replaced the time-division multiplexing readout system with microwave-multiplexing components including superconducting microwave resonators coupled to radio frequency superconducting quantum interference devices at the sub-Kelvin focal plane, coaxial-cable plumbing and amplification between room temperature and the cold stages, and a SLAC Microresonator Radio Frequency system for the warm electronics. In the range 5–6 GHz, a single coaxial cable reads out 528 channels. The readout system is coupled to transition-edge sensors, which are in turn coupled to 150-GHz slot-dipole phased-array antennas. Observations began in April 2019, and we report here on an initial characterization of the system performance.

16 citations


Journal ArticleDOI
TL;DR: In this article, the authors report on analysis of englacial radiofrequency (RF) pulser data received over horizontal baselines of 1-5 km, based on broadcasts from two sets of transmitters deployed to depths of up to 1500 meters at the South Pole.
Abstract: We report on analysis of englacial radio-frequency (RF) pulser data received over horizontal baselines of 1--5 km, based on broadcasts from two sets of transmitters deployed to depths of up to 1500 meters at the South Pole. First, we analyze data collected usingtwo RF bicone transmitters 1400 meters below the ice surface, and frozen into boreholes drilled for the IceCube experiment in 2011. Additionally, in Dec., 2018, a fat-dipole antenna, fed by one of three high-voltage (~1 kV), fast (~(1-5 ns)) signal generators was lowered into the 1700-m deep icehole drilled for the South Pole Ice Core Experiment (SPICE), approximately 3 km from the geographic South Pole. Signals from transmitters were recorded on the five englacial multi-receiver ARA stations, with receiver depths between 60--200 m. We confirm the long, >1 km RF electric field attenuation length, test our observed signal arrival timing distributions against models, and measure birefringent asymmetries at the 0.15% level.

15 citations


Journal ArticleDOI
TL;DR: The BICEP/Keck (BK) experiment targets this primordial signature, the amplitude of which is parameterized by the tensor-to-scalar ratio r, by observing the polarized microwave sky through the exceptionally clean and stable atmosphere at the South Pole as discussed by the authors.
Abstract: Branches of cosmic inflationary models, such as slow-roll inflation, predict a background of primordial gravitational waves that imprints a unique odd-parity “B-mode” pattern in the Cosmic Microwave Background (CMB) at amplitudes that are within experimental reach. The BICEP/Keck (BK) experiment targets this primordial signature, the amplitude of which is parameterized by the tensor-to-scalar ratio r, by observing the polarized microwave sky through the exceptionally clean and stable atmosphere at the South Pole. B-mode measurements require an instrument with exquisite sensitivity, tight control of systematics, and wide frequency coverage to disentangle the primordial signal from the Galactic foregrounds. BICEP Array represents the most recent stage of the BK program and comprises four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz. The 30/40 GHz receiver will be deployed at the South Pole during the 2019/2020 austral summer. After 3 full years of observations with 30,000+ detectors, BICEP Array will measure primordial gravitational waves to a precision σ(r) between 0.002 and 0.004, depending on foreground complexity and the degree of lensing removal. In this paper, we give an overview of the instrument, highlighting the design features in terms of cryogenics, magnetic shielding, detectors and readout architecture as well as reporting on the integration and tests that are ongoing with the first receiver at 30/40 GHz.

Journal ArticleDOI
TL;DR: In this article, the authors used three years of publicly available IceCube data to search for evidence of neutrino emission from the blazars and non-blazar Active Galactic Nuclei (AGN) contained the Fermi 4LAC catalog.
Abstract: The origin of the astrophysical neutrino flux reported by the IceCube Collaboration remains an open question. In this study, we use three years of publicly available IceCube data to search for evidence of neutrino emission from the blazars and non-blazar Active Galactic Nuclei (AGN) contained the Fermi 4LAC catalog. We find no evidence that these sources produce high-energy neutrinos, and conclude that blazars can produce no more than 15% of IceCube's observed flux. The constraint we derive on the contribution from non-blazar AGN, which are less luminous and more numerous than blazars, is significantly less restrictive, and it remains possible that this class of sources could produce the entirety of the diffuse neutrino flux observed by IceCube. We anticipate that it will become possible to definitively test such scenarios as IceCube accumulates and releases more data, and as gamma-ray catalogs of AGN become increasingly complete. We also comment on starburst and other starforming galaxies, and conclude that these sources could contribute substantially to the signal observed by IceCube, in particular at the lowest detected energies.

Journal ArticleDOI
TL;DR: In this paper, the authors consider the scenarios offered by Shoemaker et al. and find them to be disfavored by extant ANITA and HiCal experimental data, and they note that the recent report of four additional near-horizon anomalous neutrino events, at $>3σ$ significance, are incompatible with their model, which requires significant signal transmission into the ice.
Abstract: The balloon-borne ANITA experiment is designed to detect ultra-high energy neutrinos via radio emissions produced by an in-ice shower. Although initially purposed for interactions within the Antarctic ice sheet, ANITA also demonstrated the ability to self-trigger on radio emissions from ultra-high energy charged cosmic rays interacting in the Earth's atmosphere. For showers produced above the Antarctic ice sheet, reflection of the down-coming radio signals at the Antarctic surface should result in a polarity inversion prior to subsequent observation at the $\sim$35-40 km altitude ANITA gondola. ANITA has published two anomalous instances of upcoming cosmic-rays with measured polarity opposite the remaining sample of $\sim$50 UHECR signals. The steep observed upwards incidence angles (25--30 degrees relative to the horizontal) require non-Standard Model physics if these events are due to in-ice neutrino interactions, as the Standard Model cross-section would otherwise prohibit neutrinos from penetrating the long required chord of Earth. Shoemaker et al. posit that glaciological effects may explain the steep observed anomalous events. We herein consider the scenarios offered by Shoemaker et al. and find them to be disfavored by extant ANITA and HiCal experimental data. We note that the recent report of four additional near-horizon anomalous ANITA-4 events, at $>3\sigma$ significance, are incompatible with their model, which requires significant signal transmission into the ice.

Journal ArticleDOI
TL;DR: The BICEP/Keck experiment as mentioned in this paper is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background (CMB) polarization from the South Pole in search of a primordial $B$-mode signature.
Abstract: The BICEP/Keck experiment (BK) is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background (CMB) polarization from the South Pole in search of a primordial $B$-mode signature. This $B$-mode signal arises from primordial gravitational waves interacting with the CMB, and has amplitude parametrized by the tensor-to-scalar ratio $r$. Since 2016, BICEP3 and the Keck Array have been observing with 4800 total antenna-coupled transition-edge sensor detectors, with frequency bands spanning 95, 150, 220, and 270 GHz. Here we present the optical performance of these receivers from 2016 to 2019, including far-field beams measured in situ with an improved chopped thermal source and instrument spectral response measured with a field-deployable Fourier Transform Spectrometer. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We generate per-detector far-field beam maps and the corresponding differential beam mismatch that is used to estimate the temperature-to-polarization leakage in our CMB maps and to give feedback on detector and optics fabrication. The differential beam parameters presented here were estimated using improved low-level beam map analysis techniques, including efficient removal of non-Gaussian noise as well as improved spatial masking. These techniques help minimize systematic uncertainty in the beam analysis, with the goal of constraining the bias on $r$ induced by temperature-to-polarization leakage to be subdominant to the statistical uncertainty. This is essential as we progress to higher detector counts in the next generation of CMB experiments.

Journal ArticleDOI
TL;DR: In this article, the BICEP/Keck experiment was extended with an antenna-coupled transition edge sensor array for high-sensitivity polarized CMB observations over a wide range of millimeter-wave bands.
Abstract: Families of cosmic inflation models predict a primordial gravitational-wave background that imprints B-mode polarization pattern in the cosmic microwave background (CMB). High-sensitivity instruments with wide frequency coverage and well-controlled systematic errors are needed to constrain the faint B-mode amplitude. We have developed antenna-coupled transition edge sensor arrays for high-sensitivity polarized CMB observations over a wide range of millimeter-wave bands. BICEP array, the latest phase of the BICEP/Keck experiment series, is a multi-receiver experiment designed to search for inflationary B-mode polarization to a precision $$\sigma ({r})$$ between 0.002 and 0.004 after 3 full years of observations, depending on foreground complexity and the degree of lensing removal. We describe the electromagnetic design and measured performance of BICEP array’s low-frequency 40-GHz detector, their packaging in focal plane modules, and optical characterization including efficiency and beam matching between polarization pairs. We summarize the design and simulated optical performance, including an approach to improve the optical efficiency due to mismatch losses. We report the measured beam maps for a new broadband corrugation design to minimize beam differential ellipticity between polarization pairs caused by interactions with the module housing frame, which helps minimize polarized beam mismatch that converts CMB temperature to polarization ($$T \rightarrow P$$) anisotropy in CMB maps.

Proceedings ArticleDOI
TL;DR: The BICEP3 CMB Polarimeter as discussed by the authors is a small-aperture refracting telescope located at the South Pole and is designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB).
Abstract: The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3's ~800 functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence.

Journal ArticleDOI
TL;DR: The 30/40 GHz detector of the BICEP/Keck Array as mentioned in this paper achieved a per bolometer NEP including all noise components of $2.07\times 10^{-17}\,\mathrm{W}/\sqrt{\hbox{Hz}}.
Abstract: The BICEP/Keck (BK) experiment aims to detect the imprint of primordial gravitational waves in the cosmic microwave background polarization, which would be direct evidence of the inflation theory. While the tensor-to-scalar ratio has been constrained to be $$r_{0.05}<0.06$$ at 95% c.l., further improvements on this upper limit are hindered by polarized galactic foreground emissions and removal of gravitational lensing polarization. The 30/40 GHz receiver of the BICEP Array (BA) will deploy at the end of 2019 and will constrain the synchrotron foreground with unprecedented accuracy within the BK sky patch. We will show the design of the 30/40 GHz detectors and test results summarizing its performance. The low optical and atmospheric loading at these frequencies requires our TES detectors to have low saturation power in order to be photon noise dominated. To realize the low thermal conductivity required from a 250 mK base temperature, we developed new bolometer leg designs. We will present the relevant measured detector parameters: G, $$T_c$$, $$R_n$$, $$P_\mathrm{sat}$$, and spectral bands, and noise spectra. We achieved a per bolometer NEP including all noise components of $$2.07\times 10^{-17}\,\mathrm{W}/\sqrt{\hbox{Hz}}$$, including an anticipated photon noise level $$1.54\times 10^{-17}\,\mathrm{W}/\sqrt{\hbox{Hz}}$$.

Posted Content
13 Aug 2020
TL;DR: The ANITA-IV long-duration balloon flight in late 2016 detected 29 cosmic-ray (CR)-like events on a background of $0.37^{+0.27} + 0.17}$ anthropogenic events.
Abstract: ANITA's fourth long-duration balloon flight in late 2016 detected 29 cosmic-ray (CR)-like events on a background of $0.37^{+0.27}_{-0.17}$ anthropogenic events. CRs are mainly seen in reflection off the Antarctic ice sheets, creating a characteristic phase-inverted waveform polarity. However, four of the below-horizon CR-like events show anomalous non-inverted polarity, a $\sim 3.2\sigma$ fluctuation if due to background. All anomalous events are from locations near the horizon; ANITA-IV observed no steeply-upcoming anomalous events similar to the two such events seen in prior flights.

Journal ArticleDOI
TL;DR: The BICEP/Keck experiment as mentioned in this paper is a series of small-aperture refracting telescopes observing degree-scale cosmic microwave background (CMB) polarization from the South Pole in search of a primordial B-mode signature.
Abstract: The BICEP/Keck experiment (BK) is a series of small-aperture refracting telescopes observing degree-scale cosmic microwave background (CMB) polarization from the South Pole in search of a primordial B-mode signature. This B-mode signal arises from primordial gravitational waves interacting with the CMB and has amplitude parametrized by the tensor-to-scalar ratio r. Since 2016, BICEP3 and the Keck Array have been observing with 4800 total antenna-coupled transition-edge sensor detectors, with frequency bands spanning 95, 150, 220, and 270 GHz. Here we present the optical performance of these receivers from 2016 to 2019, including far-field beams measured in situ with an improved chopped thermal source and instrument spectral response measured with a field-deployable Fourier transform spectrometer. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We generate per-detector far-field beam maps and the corresponding differential beam mismatch that is used to estimate the temperature-to-polarization leakage in our CMB maps and to give feedback on detector and optics fabrication. The differential beam parameters presented here were estimated using improved low-level beam map analysis techniques, including efficient removal of non-Gaussian noise as well as improved spatial masking. These techniques help minimize systematic uncertainty in the beam analysis, with the goal of constraining the bias on r induced by temperature-to-polarization leakage to be subdominant to the statistical uncertainty. This is essential as we progress to higher detector counts in the next generation of CMB experiments.

Journal ArticleDOI
TL;DR: The BICEP Array as discussed by the authors is a multi-receiver experiment designed to search for inflationary B-mode polarization to a precision between 0.002 and 0.004 after 3 full years of observations, depending on foreground complexity and the degree of lensing removal.
Abstract: Families of cosmic inflation models predict a primordial gravitational-wave background that imprints B-mode polarization pattern in the Cosmic Microwave Background (CMB). High sensitivity instruments with wide frequency coverage and well-controlled systematic errors are needed to constrain the faint B-mode amplitude. We have developed antenna-coupled Transition Edge Sensor (TES) arrays for high-sensitivity polarized CMB observations over a wide range of millimeter-wave bands. BICEP Array, the latest phase of the BICEP/Keck experiment series, is a multi-receiver experiment designed to search for inflationary B-mode polarization to a precision $\sigma$(r) between 0.002 and 0.004 after 3 full years of observations, depending on foreground complexity and the degree of lensing removal. We describe the electromagnetic design and measured performance of BICEP Array low-frequency 40-GHz detector, their packaging in focal plane modules, and optical characterization including efficiency and beam matching between polarization pairs. We summarize the design and simulated optical performance, including an approach to improve the optical efficiency due to mismatch losses. We report the measured beam maps for a new broad-band corrugation design to minimize beam differential ellipticity between polarization pairs caused by interactions with the module housing frame, which helps minimize polarized beam mismatch that converts CMB temperature to polarization ($T \rightarrow P$) anisotropy in CMB maps.

Proceedings ArticleDOI
J. Kang1, P. A. R. Ade2, Zeeshan Ahmed3, Mandana Amiri4, Denis Barkats5, R. Basu Thakur1, Colin A. Bischoff6, James J. Bock7, James J. Bock1, H. Boenish5, E. Bullock8, Victor Buza, J. Cheshire8, Jake Connors9, J. Cornelison5, M. Crumrine8, A. Cukierman3, E. V. Denison9, Marion Dierickx5, Lionel Duband, M. Eiben5, S. Fatigoni4, Jeffrey P. Filippini10, S. Fliescher8, Neil Goeckner-Wald3, D. C. Goldfinger5, J. A. Grayson3, Paul K. Grimes5, G. Hall8, Mark Halpern4, Sarah M. Harrison5, S. Henderson3, Sergi R. Hildebrandt1, Sergi R. Hildebrandt7, Gene C. Hilton9, Johannes Hubmayr9, Howard Hui1, Kent D. Irwin9, Kent D. Irwin3, Kirit Karkare11, E. Karpel3, S. Kefeli1, S. A. Kernasovskiy3, John M Kovac5, Chao-Lin Kuo3, King Tong Lau8, E. M. Leitch11, K. G. Megerian7, L. Minutolo1, Lorenzo Moncelsi1, Y. Nakato8, Toshiya Namikawa12, H. T. Nguyen7, H. T. Nguyen1, Roger O'Brient1, Roger O'Brient7, R. W. Ogburn3, S. Palladino6, N. Precup8, T. Prouve, C. Pryke8, C. Pryke11, B. Racine5, Carl D. Reintsema9, S. Richter5, Alessandro Schillaci1, Benjamin L. Schmitt5, R. Schwarz8, C. D. Sheehy8, Ahmed Soliman1, T. St. Germaine5, Bryan Steinbach1, Rashmikant V. Sudiwala2, G. P. Teply13, Keith L. Thompson3, J. E. Tolan3, Carole Tucker2, Anthony D. Turner7, C. Umiltà10, Abigail G. Vieregg11, A. Wandui1, A. C. Weber7, Donald V. Wiebe4, J. Willmert8, C. L. Wong5, W. L. K. Wu3, Eui-Hyeok Yang3, Ki Won Yoon3, Edward D. Young3, Che-Hang Yu3, Lingzhen Zeng5, Chao Zhang1, Shengyu Zhang1 
TL;DR: In this paper, a low-elevation observation strategy was developed to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area.
Abstract: BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a methodology to search for energetic neutrinos spatially and temporally coincident with potential source classes in ANITA data, which is applied to several source classes: the TXS 0506+056 blazar and NGC 1068, the first potential TeV neutrino sources identified by IceCube, flaring high-energy blazars reported by the Fermi All-Sky Variability Analysis, gamma-ray bursts, and supernovae.
Abstract: The ANtarctic Impulsive Transient Antenna (ANITA) long-duration balloon experiment is sensitive to interactions of ultra high-energy (E > 10^{18} eV) neutrinos in the Antarctic ice sheet. The third flight of ANITA, lasting 22 days, began in December 2014. We develop a methodology to search for energetic neutrinos spatially and temporally coincident with potential source classes in ANITA data. This methodology is applied to several source classes: the TXS 0506+056 blazar and NGC 1068, the first potential TeV neutrino sources identified by IceCube, flaring high-energy blazars reported by the Fermi All-Sky Variability Analysis, gamma-ray bursts, and supernovae. Among searches within the five source classes, one candidate was identified as associated with SN 2015D, although not at a statistically significant level. We proceed to place upper limits on the source classes. We further comment on potential applications of this methodology to more sensitive future instruments.

Posted Content
TL;DR: The BICEP3 CMB Polarimeter as discussed by the authors is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB).
Abstract: The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3s $\sim800$ functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence.

Proceedings ArticleDOI
TL;DR: In this paper, the Bicep/Keck Array experiment is used to estimate the temperature-to-polarization (T → P) leakage in their latest data including observations from 2016 through 2018.
Abstract: The Bicep/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial B-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T → P) leakage in our latest data including observations from 2016 through 2018. This includes three years of Bicep3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no Q/U) sky to estimate T → P leakage in our real data.

Posted Content
TL;DR: The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primordial $B$-mode polarization is expected to peak, with ever increasing sensitivity and has published the most stringent constraints on inflation to date as discussed by the authors.
Abstract: A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primordial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. BICEP Array (BA) is the Stage-3 instrument of the BK program and will comprise four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale $B$-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full BICEP Array instrument is projected to reach $\sigma_r$ between 0.002 and 0.004, depending on foreground complexity and degree of removal of $B$-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.

Journal ArticleDOI
TL;DR: The 30/40 GHz detector of the BICEP/Keck Array as discussed by the authors achieved a per bolometer NEP including all noise components of 2.07E-17 W/sqrt(Hz), including an anticipated photon noise level 1.54E- 17 W/squarerrt (Hz) at 95% c.l.
Abstract: The BICEP/Keck (BK) experiment aims to detect the imprint of primordial gravitational waves in the Cosmic Microwave Background polarization, which would be direct evidence of the inflation theory. While the tensor-to-scalar ratio has been constrained to be r_0.05 < 0.06 at 95% c.l., further improvements on this upper limit are hindered by polarized Galactic foreground emissions and removal of gravitational lensing polarization. The 30/40 GHz receiver of the BICEP Array (BA) will deploy at the end of 2019 and will constrain the synchrotron foreground with unprecedented accuracy within the BK sky patch. We will show the design of the 30/40 GHz detectors and test results summarizing its performance. The low optical and atmospheric loading at these frequencies requires our TES detectors to have low saturation power in order to be photon-noise dominated. To realize the low thermal conductivity required from a 250 mK base temperature, we developed new bolometer leg designs. We will present the relevant measured detector parameters: G, Tc, Rn, Psat , and spectral bands, and noise spectra. We achieved a per bolometer NEP including all noise components of 2.07E-17 W/sqrt(Hz), including an anticipated photon noise level 1.54E-17 W/sqrt(Hz).