scispace - formally typeset
A

Alexandre Tkatchenko

Researcher at University of Luxembourg

Publications -  298
Citations -  36119

Alexandre Tkatchenko is an academic researcher from University of Luxembourg. The author has contributed to research in topics: van der Waals force & Density functional theory. The author has an hindex of 77, co-authored 271 publications receiving 26863 citations. Previous affiliations of Alexandre Tkatchenko include Max Planck Society & Rafael Advanced Defense Systems.

Papers
More filters
Journal ArticleDOI

Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data

TL;DR: It is shown that the effective atomic C6 coefficients depend strongly on the bonding environment of an atom in a molecule, and the van der Waals radii and the damping function in the C6R(-6) correction method for density-functional theory calculations.
Journal ArticleDOI

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

TL;DR: A machine learning model is introduced to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only, and applicability is demonstrated for the prediction of molecular atomization potential energy curves.
Journal ArticleDOI

Accurate and Efficient Method for Many-Body van der Waals Interactions

TL;DR: It is shown that the screening and the many-body vdW energy play a significant role even for rather small molecules, becoming crucial for an accurate treatment of conformational energies for biomolecules and binding of molecular crystals.
Journal ArticleDOI

Reproducibility in density functional theory calculations of solids

Kurt Lejaeghere, +79 more
- 25 Mar 2016 - 
TL;DR: A procedure to assess the precision of DFT methods was devised and used to demonstrate reproducibility among many of the most widely used DFT codes, demonstrating that the precisionof DFT implementations can be determined, even in the absence of one absolute reference code.
Journal ArticleDOI

SchNet - A deep learning architecture for molecules and materials.

TL;DR: SchNet as mentioned in this paper is a deep learning architecture specifically designed to model atomistic systems by making use of continuous-filter convolutional layers, where the model learns chemically plausible embeddings of atom types across the periodic table.