scispace - formally typeset
Search or ask a question

Showing papers by "Claudia Jakubzick published in 2012"


Journal ArticleDOI
TL;DR: It is identified how well-characterized surface markers, including MerTK and FcγR1 (CD64), along with a cluster of previously unidentified transcripts, were distinctly and universally associated with mature tissue macrophages and how these transcripts and the proteins they encode facilitated distinguishing macrophage from dendritic cells.
Abstract: We assessed gene expression in tissue macrophages from various mouse organs The diversity in gene expression among different populations of macrophages was considerable Only a few hundred mRNA transcripts were selectively expressed by macrophages rather than dendritic cells, and many of these were not present in all macrophages Nonetheless, well-characterized surface markers, including MerTK and FcγR1 (CD64), along with a cluster of previously unidentified transcripts, were distinctly and universally associated with mature tissue macrophages TCEF3, C/EBP-α, Bach1 and CREG-1 were among the transcriptional regulators predicted to regulate these core macrophage-associated genes The mRNA encoding other transcription factors, such as Gata6, was associated with single macrophage populations We further identified how these transcripts and the proteins they encode facilitated distinguishing macrophages from dendritic cells

1,675 citations



Journal ArticleDOI
TL;DR: Critical roles for macrophage PPARγ are uncovered in promoting resolution of inflammation and maintaining functionality in lung macrophages where it plays a pivotal role in supporting pulmonary host defense.
Abstract: Although peroxisome proliferator-activated receptor γ (PPARγ) has anti-inflammatory actions in macrophages, which macrophage populations express PPARγ in vivo and how it regulates tissue homeostasis in the steady state and during inflammation remains unclear. We now show that lung and spleen macrophages selectively expressed PPARγ among resting tissue macrophages. In addition, Ly-6Chi monocytes recruited to an inflammatory site induced PPARγ as they differentiated to macrophages. When PPARγ was absent in Ly-6Chi–derived inflammatory macrophages, initiation of the inflammatory response was unaffected, but full resolution of inflammation failed, leading to chronic leukocyte recruitment. Conversely, PPARγ activation favored resolution of inflammation in a macrophage PPARγ-dependent manner. In the steady state, PPARγ deficiency in red pulp macrophages did not induce overt inflammation in the spleen. By contrast, PPARγ deletion in lung macrophages induced mild pulmonary inflammation at the steady state and surprisingly precipitated mortality upon infection with Streptococcus pneumoniae. This accelerated mortality was associated with impaired bacterial clearance and inability to sustain macrophages locally. Overall, we uncovered critical roles for macrophage PPARγ in promoting resolution of inflammation and maintaining functionality in lung macrophages where it plays a pivotal role in supporting pulmonary host defense. In addition, this work identifies specific macrophage populations as potential targets for the anti-inflammatory actions of PPARγ agonists.

142 citations