scispace - formally typeset
Search or ask a question

Showing papers by "Constantinos Koumenis published in 2018"



Journal ArticleDOI
TL;DR: Using murine and humanized models of prostate cancer (PCa), it is shown that one of the three branches of the unfolded protein response is selectively activated in advanced PCa and selectively triggers cytotoxicity against aggressive metastatic PCa.
Abstract: Oncogenic lesions up-regulate bioenergetically demanding cellular processes, such as protein synthesis, to drive cancer cell growth and continued proliferation. However, the hijacking of these key processes by oncogenic pathways imposes onerous cell stress that must be mitigated by adaptive responses for cell survival. The mechanism by which these adaptive responses are established, their functional consequences for tumor development, and their implications for therapeutic interventions remain largely unknown. Using murine and humanized models of prostate cancer (PCa), we show that one of the three branches of the unfolded protein response is selectively activated in advanced PCa. This adaptive response activates the phosphorylation of the eukaryotic initiation factor 2–α (P-eIF2α) to reset global protein synthesis to a level that fosters aggressive tumor development and is a marker of poor patient survival upon the acquisition of multiple oncogenic lesions. Using patient-derived xenograft models and an inhibitor of P-eIF2α activity, ISRIB, our data show that targeting this adaptive brake for protein synthesis selectively triggers cytotoxicity against aggressive metastatic PCa, a disease for which presently there is no cure.

112 citations


Journal ArticleDOI
TL;DR: It is demonstrated that c-Myc-dependent activation of the UPR inhibits Bmal1 in Burkitt’s lymphoma, thereby suppressing both circadian oscillation and ongoing protein synthesis to facilitate tumour progression.
Abstract: The unfolded protein response (UPR) is a stress-activated signalling pathway that regulates cell proliferation, metabolism and survival. The circadian clock coordinates metabolism and signal transduction with light/dark cycles. We explore how UPR signalling interfaces with the circadian clock. UPR activation induces a 10 h phase shift in circadian oscillations through induction of miR-211, a PERK-inducible microRNA that transiently suppresses both Bmal1 and Clock, core circadian regulators. Molecular investigation reveals that miR-211 directly regulates Bmal1 and Clock via distinct mechanisms. Suppression of Bmal1 and Clock has the anticipated impact on expression of select circadian genes, but we also find that repression of Bmal1 is essential for UPR-dependent inhibition of protein synthesis and cell adaptation to stresses that disrupt endoplasmic reticulum homeostasis. Our data demonstrate that c-Myc-dependent activation of the UPR inhibits Bmal1 in Burkitt’s lymphoma, thereby suppressing both circadian oscillation and ongoing protein synthesis to facilitate tumour progression.

78 citations


Journal ArticleDOI
TL;DR: It is revealed that glioma CSCs are hypersensitive to radiation, but a temporal DNA repair mechanism converts the intrinsic sensitivity to genomic instability and treatment resistance to time-sensitive mechanism controlling CSC resistance to DNA-damaging treatments.
Abstract: Cancer stem cells (CSCs) - known to be resistant to genotoxic radiation and chemotherapy - are fundamental to therapy failure and cancer relapse Here, we reveal that glioma CSCs are hypersensitive to radiation, but a temporal DNA repair mechanism converts the intrinsic sensitivity to genomic instability and treatment resistance Transcriptome analysis identifies DNA-dependent protein kinase (DNA-PK) as a predominant DNA repair enzyme in CSCs Notably, DNA-PK activity is suppressed after irradiation when ROS induce the dissociation of DNA-PKcs with Ku70/80, resulting in delayed DNA repair and radiosensitivity; subsequently, after ROS clearance, the accumulated DNA damage and robust activation of DNA-PK induce genomic instability, facilitated by Rad50-mediated cell-cycle arrest, leading to enhanced malignancy, CSC overgrowth, and radioresistance Finally, we show a requisite in vivo role for DNA-PK in CSC-mediated radioresistance and glioma progression These findings identify a time-sensitive mechanism controlling CSC resistance to DNA-damaging treatments and suggest DNA-PK/Rad50 as promising targets for CSC eradication

43 citations


Journal ArticleDOI
TL;DR: These results provide a preclinical rationale for improved treatment modalities using olaparib as an effective radiosensitizer in HGSOC, particularly in tumors with BRCA1-deficiencies.

34 citations


Journal ArticleDOI
TL;DR: It is reported that YAP1 and NF-κB activity suppress circadian clock function, inhibiting differentiation and promoting proliferation, and identifies specific autophagy, UPR, and muscle differentiation-associated genes as potential biomarkers of treatment efficacy and differentiation.
Abstract: Terminal differentiation opposes proliferation in the vast majority of tissue types. As a result, loss of lineage differentiation is a hallmark of aggressive cancers, including soft tissue sarcomas (STS). Consistent with these observations, undifferentiated pleomorphic sarcoma (UPS), an STS subtype devoid of lineage markers, is among the most lethal sarcomas in adults. Though tissue-specific features are lost in these mesenchymal tumors they are most commonly diagnosed in skeletal muscle, and are thought to develop from transformed muscle progenitor cells. We have found that a combination of HDAC (Vorinostat) and BET bromodomain (JQ1) inhibition partially restores differentiation to skeletal muscle UPS cells and tissues, enforcing a myoblast-like identity. Importantly, differentiation is partially contingent upon downregulation of the Hippo pathway transcriptional effector Yes-associated protein 1 (YAP1) and nuclear factor (NF)-κB. Previously, we observed that Vorinostat/JQ1 inactivates YAP1 and restores oscillation of NF-κB in differentiating myoblasts. These effects correlate with reduced tumorigenesis, and enhanced differentiation. However, the mechanisms by which the Hippo/NF-κB axis impact differentiation remained unknown. Here, we report that YAP1 and NF-κB activity suppress circadian clock function, inhibiting differentiation and promoting proliferation. In most tissues, clock activation is antagonized by the unfolded protein response (UPR). However, skeletal muscle differentiation requires both Clock and UPR activity, suggesting the molecular link between them is unique in muscle. In skeletal muscle-derived UPS, we observed that YAP1 suppresses PERK and ATF6-mediated UPR target expression as well as clock genes. These pathways govern metabolic processes, including autophagy, and their disruption shifts metabolism toward cancer cell-associated glycolysis and hyper-proliferation. Treatment with Vorinostat/JQ1 inhibited glycolysis/MTOR signaling, activated the clock, and upregulated the UPR and autophagy via inhibition of YAP1/NF-κB. These findings support the use of epigenetic modulators to treat human UPS. In addition, we identify specific autophagy, UPR, and muscle differentiation-associated genes as potential biomarkers of treatment efficacy and differentiation.

28 citations


Journal ArticleDOI
TL;DR: The findings of this study suggest that applying very thick amounts of a topical agent before RT may increase the surface dose and should be avoided.
Abstract: Importance Radiation dermatitis is common and often treated with topical therapy. Patients are typically advised to avoid topical agents for several hours before daily radiotherapy (RT) out of concern that topical agents might increase the radiation dose to the skin. With modern RT’s improved skin-sparing properties, this recommendation may be irrelevant. Objective To assess whether applying either metallic or nonmetallic topical agents before radiation treatment alters the skin dose. Design, Setting, and Participants A 24-question online survey of patients and clinicians was conducted from January 15, 2015, to March 15, 2017, to determine current practices regarding topical therapy use. In preclinical studies, dosimetric effect of the topical agents was evaluated by delivering 200 monitor units and measuring the dose at the surface and at 2-cm depth in a tissue-equivalent phantom with or without 2 common topical agents: a petroleum-based ointment (Aquaphor, petrolatum 41%) and silver sulfadiazine cream, 1%. Skin doses associated with various photon and electron energies, topical agent thicknesses, and beam incidence were assessed. Whether topical agents altered the skin dose was also evaluated in 24 C57BL/6 mice by using phosphorylated histone (γ-H2AX) immunofluorescent staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Preclinical studies took place at the University of Pennsylvania. Main Outcomes and Measures Patient and clinician survey responses; surface radiation dose readings in tissue-equivalent phantom; and γ-H2AX and TUNEL intensity measured in mice. Results The 133 patients surveyed received RT for cancer and had a median (range) age of 60 (18-86) years; 117 (87.9%) were women. One hundred eight clinicians completed the survey with 105 reporting that they were involved in managing patient skin care during RT. One hundred eleven (83.4%) of the patients and 96 (91.4%) of the 105 clinicians received or gave the advice to avoid applying topical agents before RT treatments. Dosimetric measurements showed no difference in the delivered dose at either the surface or a 2-cm depth with or without a 1- to 2-mm application of either topical agent when using en face 6- or 15-megavoltage (MV) photons. The same application of topicals did not alter the surface dose as a function of beam incident angle from 15° to 60°, except for a 6% increase at 60° with the silver sulfadiazine cream. Surface dose for 6- and 15-MV beams were significantly increased with a thicker (≥3-mm) topical application. For 6 MV, the surface dose was 1.05 Gy with a thick layer of petroleum-based ointment and 1.02 Gy for silver sulfadiazine cream vs 0.88 Gy without topical agents. For 15 MV, the doses were 0.70 Gy for a thick layer of petroleum-based ointment and 0.60 Gy for silver sulfadiazine cream vs 0.52 Gy for the controls. With 6- and 9-MeV electrons, there was a 2% to 5% increase in surface dose with the use of the topical agents. There were no dose differences at 2-cm depth. Irradiated skin in mice showed no differences in γ-H2AX–positive foci or in TUNEL staining with or without topical agents of varying thickness. Conclusions and Relevance Thin or moderately applied topical agents, even if applied just before RT, may have minimal influence on skin dose regardless of beam energy or beam incidence. The findings of this study suggest that applying very thick amounts of a topical agent before RT may increase the surface dose and should be avoided.

12 citations


Journal ArticleDOI
TL;DR: Genome-wide RNAi screen identifies novel genes/pathways that modulate IRE1α–XBP1 signaling in human tumor cells and leads to the development of improved therapeutic approaches targeting the UPR.
Abstract: Activation of the unfolded protein response (UPR) signaling pathways is linked to multiple human diseases, including cancer. The inositol-requiring kinase 1α (IRE1α)-X-box binding protein 1 (XBP1) pathway is the most evolutionarily conserved of the three major signaling branches of the UPR. Here, we performed a genome-wide siRNA screen to obtain a systematic assessment of genes integrated in the IRE1α-XBP1 axis. We monitored the expression of an XBP1-luciferase chimeric protein in which luciferase was fused in-frame with the spliced (active) form of XBP1. Using cells expressing this reporter construct, we identified 162 genes for which siRNA inhibition resulted in alteration in XBP1 splicing. These genes express diverse types of proteins modulating a wide range of cellular processes. Pathway analysis identified a set of genes implicated in the pathogenesis of breast cancer. Several genes, including BCL10, GCLM, and IGF1R, correlated with worse relapse-free survival (RFS) in an analysis of patients with triple-negative breast cancer (TNBC). However, in this cohort of 1,908 patients, only high GCLM expression correlated with worse RFS in both TNBC and non-TNBC patients. Altogether, our study revealed unidentified roles of novel pathways regulating the UPR, and these findings may serve as a paradigm for exploring novel therapeutic opportunities based on modulating the UPR.Implications: Genome-wide RNAi screen identifies novel genes/pathways that modulate IRE1α-XBP1 signaling in human tumor cells and leads to the development of improved therapeutic approaches targeting the UPR.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/5/745/F1.large.jpg Mol Cancer Res; 16(5); 745-53. ©2018 AACR.

6 citations


Journal ArticleDOI
TL;DR: It is shown that glioma stem cells co-opt an AMPK-dependent pathway to rewire metabolism, promoting tumour growth.
Abstract: AMPK is a key metabolic sensor promoting cellular energy homeostasis under low-nutrient conditions and other stresses. However, its role in cancer is context-dependent and not fully understood. A study now shows that glioma stem cells co-opt an AMPK-dependent pathway to rewire metabolism, promoting tumour growth.

6 citations