scispace - formally typeset
Search or ask a question

Showing papers by "Jian-Yang Li published in 2020"


Journal ArticleDOI
08 Oct 2020-Science
TL;DR: Maps of color and albedo on asteroid Bennu indicate complex evolution of its surface due to space weathering, and constrain Bennu's evolution and provide context for the sample collected in October 2020.
Abstract: Visible-wavelength color and reflectance provide information about the geologic history of planetary surfaces. We present multispectral images (0.44 to 0.89 microns) of near-Earth asteroid (101955) Bennu. The surface has variable colors overlain on a moderately blue global terrain. Two primary boulder types are distinguishable by their reflectance and texture. Space weathering of Bennu surface materials does not simply progress from red to blue (or vice versa). Instead, freshly exposed, redder surfaces initially brighten in the near-ultraviolet (become bluer at shorter wavelengths), then brighten in the visible to near-infrared, leading to Bennu’s moderately blue average color. Craters indicate that the timescale of these color changes is ~105 years. We attribute the reflectance and color variation to a combination of primordial heterogeneity and varying exposure ages.

86 citations


Journal ArticleDOI
TL;DR: Recently, 2I/Borisov was discovered to have a high CO/H2O ratio as mentioned in this paper, more than three times higher than any other known comet in the inner <2.5 au) Solar System.
Abstract: Interstellar comets offer direct samples of volatiles from distant protoplanetary disks. 2I/Borisov is the first notably active interstellar comet discovered in our Solar System1. Comets are condensed samples of the gas, ice and dust that were in a star’s protoplanetary disk during the formation of its planets, and inform our understanding on how chemical compositions and abundances vary with distance from the central star. Their orbital migration distributes volatiles2, organic material and prebiotic chemicals around their host system3. In our Solar System, hundreds of comets have been observed remotely, and a few have been studied up close by space missions4. However, knowledge of extrasolar comets has been limited to what could be gleaned from distant, unresolved observations of cometary regions around other stars, with only one detection of carbon monoxide5. Here we report that the coma of 2I/Borisov contains substantially more CO than H2O gas, with abundances of at least 173%, more than three times higher than previously measured for any comet in the inner (<2.5 au) Solar System4. Our ultraviolet Hubble Space Telescope observations of 2I/Borisov provide the first glimpse into the ice content and chemical composition of the protoplanetary disk of another star that is substantially different from our own. Hubble Space Telescope data show that interstellar comet 2I/Borisov has an unusually high CO/H2O ratio—higher than any other comet that has been seen in the inner regions of our Solar System. This allows us to constrain the nature and location of the circumstellar region from which 2I/Borisov originated.

69 citations


Journal ArticleDOI
06 Nov 2020-Science
TL;DR: Global spectral observations by the OSIRIS-REx spacecraft have shown that carbon-bearing materials, including organics and/or carbonates, are widespread on the surface of near-Earth asteroid (101955) Bennu.
Abstract: The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System. We present spectra of the Nightingale crater region on near-Earth asteroid Bennu with a distinct infrared absorption around 3.4 micrometers. Corresponding images of boulders show centimeters-thick, roughly meter-long bright veins. We interpret the veins as being composed of carbonates, similar to those found in aqueously altered carbonaceous chondrite meteorites. If the veins on Bennu are carbonates, fluid flow and hydrothermal deposition on Bennu's parent body would have occurred on kilometer scales for thousands to millions of years. This suggests large-scale, open-system hydrothermal alteration of carbonaceous asteroids in the early Solar System.

65 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used high-resolution images of the Dawn Framing Camera obtained close to the end of the mission to reconstruct the history of the Occator impact crater on Ceres, and found a longlasting and recent period of cryovolcanic activity, which started ≤ 9´Myr ago and lasted for several million years.
Abstract: NASA’s Dawn mission revealed a partially differentiated Ceres that has experienced cryovolcanic activity throughout its history up to the recent past. The Occator impact crater, which formed ~22 Myr ago, displays bright deposits (faculae) across its floor whose origins are still under debate: two competing hypotheses involve eruption of brines from the crust–mantle transition boundary (remnants of an ancient ocean) or alternatively from a shallow impact melt chamber. Here we report new constraints on the history of Occator that help in testing the hypotheses of its formation. We used high-resolution images of the Dawn Framing Camera obtained close to the end of the mission. We found a long-lasting and recent period of cryovolcanic activity, which started ≤9 Myr ago and lasted for several million years. Several resurfacing events, affecting the faculae and some (dark) solidified impact melt units, are shown to have occurred millions of years after crater formation and the dissipation of the impact-generated heat. These findings are indicative of a deep-seated brine source. Extensive volatile-driven emplacement of bright material occurred in the central floor, causing its subsidence due to mass loss at depth. Finally, a thick (extrusive) dome of bright material was raised in the central depression. The derived chronostratigraphy of Occator is consistent with a recently geologically active world, where salts play a major role in preserving liquid in a heat-starved body. High-spatial-resolution images of the bright points at Occator crater on Ceres, taken during the second extended Dawn mission, allowed reconstruction of the chronology of their formation. The area experienced extensive cryovolcanism less than nine million years ago that lasted several million years, indicating recent geological activity.

43 citations


Journal ArticleDOI
TL;DR: In this paper, the spectral behavior of the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) was analyzed to better constrain the surface properties and compositional variations of Bennu.
Abstract: Contact. The NASA New Frontiers asteroid sample return mission Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) has provided a large amount of data on the asteroid (101955) Bennu, including high-quality spectra obtained by the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS).Aims. To better constrain the surface properties and compositional variations of Bennu, we studied the visible and near-infrared spectral behavior across the asteroid surface by means of a statistical analysis aiming to distinguish spectrally distinct groups, if present.Methods. We applied the G -mode multivariate statistical analysis to the near-infrared OVIRS spectra to obtain an automatic statistical clustering at different confidence levels.Results. The statistical analysis highlights spectral variations on the surface of Bennu. Five distinct spectral groups are identified at a 2σ confidence level. At a higher confidence level of 3σ , no grouping is observed.Conclusions. The results at a 2σ confidence level distinguish a dominant spectral behavior group (group 1, background) and four small groups showing spectral slope variations, associated with areas with different surface properties. The background group contains most of the analyzed data, which implies a globally homogeneous surface at the spectral and spatial resolution of the data. The small groups with redder spectra are concentrated around the equatorial ridge and are associated with morphological surface features such as specific craters and boulders. No significant variation is detected in the band area or depth of the 2.74 μ m band, which is associated with hydrated phyllosilicate content. The spectral slope variations are interpreted as a consequence of different regolith particle sizes, and/or porosity, and/or space weathering, that is, the presence of more or less fresh material. The OSIRIS-REx mission primary sampling site, Nightingale, and a boulder known as the Roc, are redder than the background surface.

27 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery of HATS-71b, a transiting gas giant planet on a P = 3.7955 day orbit around aG = 15.35 mag M3 dwarf star.
Abstract: We report the discovery of HATS-71b, a transiting gas giant planet on a P = 3.7955 day orbit around aG = 15.35 mag M3 dwarf star. HATS-71 is the coolest Mdwarf star known to host a hot Jupiter. The loss of light during transits is 4.7%, more than in any other confirmed transiting planet system. The planet was identified as a candidate by the ground-based HATSouth transit survey. It was confirmed using ground-based photometry, spectroscopy, and imaging, as well as spacebased photometry from the NASA Transiting Exoplanet Survey Satellite mission (TIC 234523599). Combining all of these data, and utilizing Gaia.DR2, we find that the planet has a radius of 1.024 +/- 0.018 R-J and mass of 0.37 +/- 0.24 M-J (95% confidence upper limit of <0.80 M-J), while the star has a mass of 0.4861 +/- 0.0060 M-circle dot and a radius of 0.4783 +/- 0.0060 R-circle dot.

25 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the spectral phase reddening of the OSIRIS-REx VISible and InfraRed Spectrometer (OVIRS) on the near Earth asteroid (101955) Bennu.
Abstract: Context. The NASA mission OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) has been observing near-Earth asteroid (101955) Bennu in close proximity since December 2018. In October 2020, the spacecraft collected a sample of surface material from Bennu to return to Earth.Aims. In this work, we investigate spectral phase reddening – that is, the variation of spectral slope with phase angle – on Bennu using spectra acquired by the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) covering a phase angle range of 8–130°. We investigate this process at the global scale and for some localized regions of interest (ROIs), including boulders, craters, and the designated sample collection sites of the OSIRIS-REx mission.Methods. Spectra were wavelength- and flux-calibrated, then corrected for the out-of-band contribution and thermal emission, resampled, and finally converted into radiance factor per standard OVIRS processing. Spectral slopes were computed in multiple wavelength ranges from spectra normalized at 0.55 μ m.Results. Bennu has a globally negative spectra slope, which is typical of B-type asteroids. The spectral slope gently increases in a linear way up to a phase angle of 90°, where it approaches zero. The spectral phase reddening is monotonic and wavelength-dependent with highest values in the visible range. Its coefficient is 0.00044 μ m−1 deg−1 in the 0.55–2.5 μ m range. For observations of Bennu acquired at high phase angle (130°), phase reddening increases exponentially, and the spectral slope becomes positive. Similar behavior was reported in the literature for the carbonaceous chondrite Mukundpura in spectra acquired at extreme geometries. Some ROIs, including the sample collection site, Nightingale, have a steeper phase reddening coefficient than the global average, potentially indicating a surface covered by fine material with high micro-roughness.Conclusions. The gentle spectral phase reddening effect on Bennu is similar to that observed in ground-based measurements of other B-type asteroids, but much lower than that observed for other low-albedo bodies such as Ceres or comet 67P/Churyumov-Gerasimenko. Monotonic reddening may be associated with the presence of fine particles at micron scales and/or of particles with fractal structure that introduce micro- and sub-micro roughness across the surface of Bennu.

24 citations


Journal ArticleDOI
TL;DR: For example, 2I/Borisov is the first notably active interstellar comet discovered in our solar system as mentioned in this paper. And it contains significantly more CO than H2O gas, with abundances of at least 173%, more than three times higher than previously measured for any comet in the inner 2.5 au solar system.
Abstract: Interstellar comets offer direct samples of volatiles from distant protoplanetary disks. 2I/Borisov is the first notably active interstellar comet discovered in our solar system[1]. Comets are condensed samples of the gas, ice, and dust that were in a star's protoplanetary disk during the formation of its planets and inform our understanding on how chemical compositions and abundances vary with distance from the central star. Their orbital migration moves volatiles[2], organic material, and prebiotic chemicals in their host system[3]. In our solar system, hundreds of comets have been observed remotely, and a few have been studied up close by space missions[4]. However, knowledge of extrasolar comets has been limited to what could be gleaned from distant, unresolved observations of cometary regions around other stars, with only one detection of carbon monoxide[5]. Here we report that the coma of 2I/Borisov contains significantly more CO than H2O gas, with abundances of at least 173%, more than three times higher than previously measured for any comet in the inner (<2.5 au) solar system[4]. Our ultraviolet observations of 2I/Borisov provide the first glimpse into the ice content and chemical composition of the protoplanetary disk of another star that is substantially different from our own.

19 citations


Journal ArticleDOI
TL;DR: A multiwavelength regionally dependent photometric analysis of Pluto's anti-Charonfacing hemisphere using images collected by New Horizons' multispectral VISible Imaging Camera (MVIC) reveals large variations in the absolute value and spectral slope of the single-scattering albedo.
Abstract: A multiwavelength regionally dependent photometric analysis of Pluto's anti-Charon-facing hemisphere using images collected by New Horizons' Multispectral Visible Imaging Camera (MVIC) reveals large variations in the absolute value and spectral slope of the single-scattering albedo. Four regions of interest are analyzed: the dark equatorial belt, Pluto's north pole, nitrogen-rich regions, and the mid-latitude terrains. Regions dominated by volatile ices such as Lowell Regio and Sputnik Planitia present single-scattering albedos of ~0.98 at 492 nm, almost neutral across MVIC's visible wavelength range (400–910 nm), indicating limited contributions from tholin materials. Pluto's dark equatorial regions, informally named Cthulhu and Krun Maculae, have single-scattering albedos of ~0.16 at 492 nm and are the reddest regions. Applying the Hapke radiative transfer model to combined MVIC and Linear Etalon Imaging Spectral Array (LEISA) spectra (400–2500 nm) of Cthulhu Macula and Lowell Regio successfully reproduces the spectral properties of these two regions of dramatically disparate coloration, composition, and morphology. Since this model uses only a single coloring agent, very similar to the Titan-like tholin of Khare et al., to account for all of Pluto's colors, this result supports the Grundy et al. conclusion that Pluto's coloration is the result of photochemical products mostly produced in the atmosphere. Although cosmic rays and extreme ultraviolet photons reach Pluto's surface where they can drive chemical processing, observations of diverse surface colors do not require different chemical products produced in different environments. We report a correction scaling factor in the LEISA radiometric calibration of 0.74 ± 0.05.

19 citations



Journal ArticleDOI
TL;DR: In this article, the authors investigated spectral phase reddening on Bennu using spectra acquired by the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) covering a phase angle range of 8-130$^{o}$.
Abstract: The NASA mission OSIRIS-REx has been observing near-Earth asteroid (101955) Bennu in close proximity since December 2018. In this work, we investigate spectral phase reddening -- that is, the variation of spectral slope with phase angle -- on Bennu using spectra acquired by the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) covering a phase angle range of 8-130$^{o}$. We investigate this process at the global scale and for some localized regions of interest (ROIs), including boulders, craters, and the designated sample collection sites of the OSIRIS-REx mission. Bennu has a globally negative spectra slope, which is typical of B-type asteroids. The spectral slope gently increases in a linear way up to a phase angle of 90$^{\circ}$, where it approaches zero. The spectral phase reddening is monotonic and wavelength-dependent with highest values in the visible range. Its coefficient is 0.00044 $\mu$m$^{-1} ~deg^{-1}$ in the 0.55-2.5 $\mu$m range. For observations of Bennu acquired at high phase angle (130$^{\circ}$), phase reddening increases exponentially. Similar behavior was reported in the literature for the carbonaceous chondrite Mukundpura in spectra acquired at extreme geometries. Some ROIs, including the sample collection site, Nightingale, have a steeper phase reddening coefficient than the global average, potentially indicating a surface covered by fine material with high micro-roughness. The gentle spectral phase reddening effect on Bennu is similar to that observed in ground-based measurements of other B-type asteroids, but much lower than that observed for other low-albedo bodies such as Ceres or comet 67P/Churyumov-Gerasimenko. Monotonic reddening may be associated with the presence of fine particles at micron scales and/or of particles with fractal structure that introduce micro- and sub-micro roughness across the surface of Bennu.

Journal ArticleDOI
TL;DR: In this article, the authors applied Hapke's theory to the average phase curve for Ceres and derived the VIS-IR geometric albedo with a reference value at 0.098± 0.007.
Abstract: Context. Particulate surfaces exhibit a surge of reflectance at low phase angles, a phenomenon referred to as the opposition effect (OE). Two mechanisms are recognized as responsible for the OE: shadow hiding (SH) and coherent backscattering. The latter is typically characterized by a small angular width of a few degrees at most and according to the theoretical prediction should exhibit wavelength and albedo dependence. Aims. We characterize the OE on the surface of Ceres using Dawn Visible InfraRed mapping spectrometer hyperspectral images at low phase angles. Furthermore, this dataset, coupled with previous observations, allows us to perform a complete spectrophotometric modeling at visual-to-infrared (VIS-IR) wavelengths (0.465–4.05 μm) in the broad phase angle range ≈0◦−132◦. Methods. We applied Hapke’s theory to the average phase curve for Ceres. Disk-resolved properties of the OE were investigated through an empirical model. Results. Across the investigated phase angle interval, Ceres’ average phase curve exhibits a smaller back-scattering contribution for increasing wavelengths. This determines a progressive spectral reddening at larger phase angles that we hypothesize as being related to the effect of submicron roughness on the grain surface. In the OE region, the shape of the phase curves is fairly constant across the VIS range and no sharp opposition surge at very small phase angles (α < 2◦) can be recognized. This would suggest a major contribution from SH to Ceres’ OE. Assuming SH as the dominant mechanism, from the OE angular width we infer a high surface porosity (≈0.9), which appears in good qualitative agreement with Ceres’ low thermal inertia. Thanks to the OE observations we derive Ceres’ VIS-IR geometric albedo with a reference value at 0.55 μm of 0.098± 0.007. Mapping of the VIS normal albedo and OE angular width across a portion of the surface of Ceres does not reveal a spatial correlation between these quantities, consistent with SH dominating in the α = 0◦−7◦ interval. The comparison of Ceres’ V-band magnitude curve with that of other asteroids indicates that Ceres’ OE is typical of a low-albedo object and compatible with the C-class type.

Journal ArticleDOI
01 Feb 2020-Icarus
TL;DR: Li et al. as discussed by the authors provided corrections to two typographical errors in the “Asteroid Photometry” chapter in Asteroids IV, and the errors were in the equation of normal albedo for the Lambert model, and in the disk-integrated phase function for the Lunar-Lambert model.

Journal ArticleDOI
TL;DR: In this article, the mass loss driven shape evolution model (MONET) was applied to the shape evolution of Arrokoth, and it was shown that the current shape of the Kuiper Belt Object could be of evolutionary origin due to volatile outgassing.
Abstract: The New Horizons spacecraft's flyby of Kuiper Belt Object (KBO) (486958) Arrokoth revealed a bilobed shape with highly flattened lobes both aligned to its equatorial plane, and a rotational axis almost aligned to the orbital plane (obliquity ~99 deg). Arrokoth belongs to the Cold Classical Kuiper Belt Object population that occupies dynamically undisturbed orbits around the Sun, and as such, is a primitive object that formed in situ. Therefore, whether its shape is primordial or evolutionary carries important implications for understanding the evolution of both KBOs and potentially their dynamically derived objects, Centaurs and Jupiter Family Comets (JFC). Applying our mass loss driven shape evolution model (MONET), here we suggest that the current shape of Arrokoth could be of evolutionary origin due to volatile outgassing in a timescale of about 1 to 100 Myr, while its spin state would not significantly affected. We further argue that such a process may be ubiquitous in the evolution of the shape of KBOs shortly after their formation. This shape changing process could also be reactivated when KBOs dynamically evolve to become Centaurs and then JFCs and receive dramatically increased solar heating.

Journal ArticleDOI
TL;DR: In this article, the influence of key parameters for solar driven mass loss on the overall shape change of the final shape of the comet 67P/Churyumov-Gerasimenko was investigated.
Abstract: One of the key findings of the Rosetta's mission to the Jupiter family comet 67P/Churyumov-Gerasimenko was its peculiar bilobed shape along with the apparent north/south dichotomy in large scale morphology. This has re-ignited scientific discussions on the topic of origin, evolution and age of the nucleus. In this work we set up a general numerical investigation on the role of solar driven activity on the overall shape change. Our goal is to isolate and study the influence of key parameters for solar driven mass loss, and hopefully obtain a classification of the final shapes. We consider five general classes of three-dimensional (3D) objects for various initial conditions of spin-axis and orbital parameters, propagating them on different orbits accounting for solar driven CO ice sublimation. A detailed study of the coupling between sublimation curve and orbital parameters (for CO and H$_{2}$O ices) is also provided. The idealizations used in this study are aimed to remove the ad-hoc assumptions on activity source distribution, composition, and/or chemical inhomogeneities as applied in similar studies focusing on explaining a particular feature or observation. Our numerical experiments show that under no condition a homogeneous nucleus with solar driven outgassing can produce concave morphology on a convex shape. On the other hand, preexisting concavities can hardly be smoothed/removed for the assumed activity. In summary, the coupling between solar distance, eccentricity, spin-axis and its orientation, as well as effects on shadowing and self-heating do combine to induce morphology changes that might not be deducible without numerical simulations.

Journal ArticleDOI
TL;DR: The rotational lightcurve of Ceres shows a double peaked shape with an amplitude of about 4% as discussed by the authors, which is a negative result with an upper limit production rate of ~2$\times$10$^{24}$ molecules s$^{-1}$, assuming globally uniform production and a Haser model.
Abstract: We observed Ceres at three epochs in 2015 November and 2017 September and October with ALMA 12-meter array and in 2017 October with the ALMA Compact Array (ACA), all at ~265 GHz continuum (wavelengths of ~1.1 mm) to map the temperatures of Ceres over a full rotation at each epoch. We also used 2017 October ACA observations to search for HCN. The disk-averaged brightness temperature of Ceres is measured to be between 170 K and 180 K during our 2017 observations. The rotational lightcurve of Ceres shows a double peaked shape with an amplitude of about 4%. Our HCN search returns a negative result with an upper limit production rate of ~2$\times$10$^{24}$ molecules s$^{-1}$, assuming globally uniform production and a Haser model. A thermophysical model suggests that Ceres's top layer has higher dielectric absorption than lunar-like materials at a wavelength of 1 mm. However, previous observations showed that the dielectric absorption of Ceres decreases towards longer wavelengths. Such distinct dielectric properties might be related to the hydrated phyllosilicate composition of Ceres and possibly abundant $\mu$m-sized grains on its surface. The thermal inertia of Ceres is constrained by our modeling as likely being between 40 and 160 tiu, much higher than previous measurements at infrared wavelengths. Modeling also suggests that Ceres's lightcurve is likely dominated by spatial variations in its physical or compositional properties that cause changes in Ceres's observed thermal properties and dielectric absorption as it rotates.

Posted ContentDOI
04 Aug 2020
TL;DR: In this paper, the results of coordinated observations of 2I/Borisov with the Neil Gehrels-Swift observatory and Hubble Space Telescope (HST) were presented, which allowed the first glimpse into the ice content and chemical composition of the protoplanetary disk of another star.
Abstract:

We will present the results of coordinated observations of 2I/Borisov with the Neil Gehrels-Swift observatory (Swift) and Hubble Space Telescope (HST), which allowed us to provide the first glimpse into the ice content and chemical composition of the protoplanetary disk of another star. Comets are condensed samples of the gas, ice and dust that were in a star’s protoplanetary disk during the formation of its planets, and inform our understanding on how chemical compositions and abundances vary with distance from the central star. Their orbital migration distributes volatiles [1], organic material and prebiotic chemicals around their host system [2]. In our Solar System, hundreds of comets have been observed remotely, and a few have been studied up close by space missions [3].  Similarly, interstellar comets offer a glimpse into the building blocks, formation, and evolution of other planetary systems.  However, knowledge of extrasolar comets has been limited to what could be gleaned from distant, unresolved observations of cometary regions around other stars. 2I/Borisov, discovered in Aug. 2019, is the first notably active interstellar comet discovered in our Solar System [4].

We used the UltraViolet Optical Telescope (UVOT) of Swift to determine 2I/Borisov’s water production rates and dust content surrounding the nucleus at six epochs spaced before and after perihelion on Dec. 8.55, 2019 UTC (-2.56AU to 2.54AU) [5]. Water production rates increased steadily before perihelion at a rate of increase quicker than that of most dynamically new comets but slower than most Jupiter-family comets. After perihelion, the water production rate decreased much more rapidly than that of all previously observed comets. We used a sublimation model to constrain the active area and minimum radius of the nucleus, and found that a significant fraction of the surface of Borisov is active. 

We also used Cosmic Origins Spectrograph (COS) on the HST during four epochs around the perihelion and clearly detected the emissions of several bands of the CO Fourth Positive system, which we used to derive CO production rates [6]. Comparing these with the water production rates determined by Swift, we found that after perihelion, the coma of 2I/Borisov contains substantially more CO than H2O gas. Our abundances were more than three times higher than previously measured for any comet in the inner (<2.5 au) Solar System [3]. The derived high abundance ratio of CO/H2O and high elemental abundance of carbon relative to oxygen firmly sets 2I/Borisov apart from solar system comets, and suggest that the physical and chemical environment were Borisov was formed are substantially different from those in our solar system [6, 7] .

 

...read more


Journal ArticleDOI
TL;DR: The rotational lightcurve of Ceres shows a double peaked shape with an amplitude of about 4% as mentioned in this paper, which is a negative result with an upper limit production rate of ~2$\times$10$^{24}$ molecules s$^{-1}$, assuming globally uniform production and a Haser model.
Abstract: We observed Ceres at three epochs in 2015 November and 2017 September and October with ALMA 12-meter array and in 2017 October with the ALMA Compact Array (ACA), all at ~265 GHz continuum (wavelengths of ~1.1 mm) to map the temperatures of Ceres over a full rotation at each epoch. We also used 2017 October ACA observations to search for HCN. The disk-averaged brightness temperature of Ceres is measured to be between 170 K and 180 K during our 2017 observations. The rotational lightcurve of Ceres shows a double peaked shape with an amplitude of about 4%. Our HCN search returns a negative result with an upper limit production rate of ~2$\times$10$^{24}$ molecules s$^{-1}$, assuming globally uniform production and a Haser model. A thermophysical model suggests that Ceres's top layer has higher dielectric absorption than lunar-like materials at a wavelength of 1 mm. However, previous observations showed that the dielectric absorption of Ceres decreases towards longer wavelengths. Such distinct dielectric properties might be related to the hydrated phyllosilicate composition of Ceres and possibly abundant $\mu$m-sized grains on its surface. The thermal inertia of Ceres is constrained by our modeling as likely being between 40 and 160 tiu, much higher than previous measurements at infrared wavelengths. Modeling also suggests that Ceres's lightcurve is likely dominated by spatial variations in its physical or compositional properties that cause changes in Ceres's observed thermal properties and dielectric absorption as it rotates.

Posted Content
TL;DR: The closest approach of comet 46P/Wirtanen in 2018-2019 provided a unique opportunity to study the inner most parts of a cometary coma with the Hubble Space Telescope Cosmic Origins Spectrograph, at length scales (100's of km) and wavelengths (900-1430 Angstroms) previously probed only by the European Space Agency's Rosetta spacecraft as discussed by the authors.
Abstract: Far ultraviolet observations of comets yield information about the energetic processes that dissociate the sublimated gases from their primitive surfaces. Understanding which emission processes are dominant, their effects on the observed cometary spectrum, and how to properly invert the spectrum back to composition of the presumably pristine surface ices of a comet nuclei are all critical components for proper interpretation and analysis of comets. The close approach of comet 46P/Wirtanen in 2018-2019 provided a unique opportunity to study the inner most parts of a cometary coma with the Hubble Space Telescope Cosmic Origins Spectrograph, rarely accessible with remote observations, at length scales (100's of km) and wavelengths (900-1430 Angstroms) previously probed only by the European Space Agency's Rosetta spacecraft. Our observations show a complex picture for the inner coma; atomic production rates for H and O that show water is the dominant source of both, an abundance of atomic sulfur that is difficult to explain with the lifetimes of common sulfur parent molecules, and a density distribution that is poorly fit with both Haser and vectorial models.

Posted ContentDOI
04 Aug 2020
TL;DR: In this article, the authors used a Kolmogorov-Smirnov (K-S) parameter test to find which laboratory spectra best fit the OVIRS spectra, in the wavelength range from 3.2 to 3.6 microns.
Abstract:
 

1. Introduction

Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) is a NASA New Frontiers mission to return a sample of near-Earth asteroid (101955) Bennu. The OSIRIS-REx spacecraft is equipped with a suite of scientific instruments [1], including the OSIRIS-REx Camera Suite (OCAMS) and the OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS), among others. OCAMS’s high-spatial-resolution images of Bennu’s surface facilitate the identification of regions of interest, characterization of surface morphology, and mapping of relative surface albedo [2]. OVIRS is a point spectrometer that measures surface composition [3]. The OVIRS footprint during the Reconnaissance phase of the mission [1] had an observational field of view with diameters between 5 to 9 m.

We search for and distinguish organics and carbonates on the surface of Bennu by studying the shape of the 3.4-micron feature, as observed by the OVIRS spectrometer during reconnaissance of candidate sampling sites [4]. Aliphatic organics have vibrational stretching bands at 3.4 microns, and the CO32- anion in carbonate minerals has an overtone of a fundamental asymmetric vibrational stretch, also at 3.4 microns. Organics on asteroids are hypothesized to be related to the organic materials delivered to Earth during the early bombardment phase of Earth’s development [5]. Carbonates record evidence of aqueous processes on Bennu [6], and together the organics and carbonates provide evidence for Bennu’s alteration history.

We present the results of a search for Bennu spectral matches to specific laboratory carbonate spectra and meteoritic aliphatic organic spectra, in the wavelength range from 3.2 to 3.6 microns. The carbonate spectra were obtained from the RELAB facility at Brown University [7], and the insoluble organic material (IOM) spectra were obtained from [8]. For the carbonates, we test ~10 representative spectra each of calcite, dolomite, and magnesite. For the organic IOM, we test spectra such as Tagish Lake, Cold Bokkeveld, Mighei, Murchison, and Orgueil.

2 Data collection and preparation

2.1 Spectrum preparation 

To prepare laboratory and OVIRS spectra for band-match testing, we first divide every spectrum by a continuum, defined as a second order polynomial. The parabola is constrained using reflectance values at the wavelengths 2.95, 3.24, 3.6 microns. We then “stretch” the band by normalizing each spectrum such that the band minimum occurs at 0.0 and the maximum occurs at 1.0. Thus, we are only comparing the band shapes, as all other quantitative information has been removed by the continuum normalization and the band stretching.   

2.2 K-S parameter test

We apply a Kolmogorov-Smirnov (K-S) parameter test to find which laboratory spectra best fit the OVIRS spectra. We compare each laboratory spectrum to the entire OVIRS data set. The K-S parameter is an evaluation of the maximum discrepancy between two cumulative distribution functions (Figure 1). That is, we calculate the cumulative sum of the laboratory and OVIRS spectra and find the points of maximum discrepancy. The smaller the discrepancy, the better the fit. 

3 Results 

Figure 1 shows an example match between an OVIRS spectrum from Bennu and a laboratory spectrum of calcite.  Because the K-S parameter has a very low value (<0.013), we consider this a strong calcite detection. We perform the same test for the different types of carbonates and detect calcite more frequently than dolomite or magnesite. We perform the K-S test for all different types of IOM in our spectral library, and we find good matches on Bennu for the IOM in the Tagish Lake, Cold Bokkeveld, Mighei, Murchison, and Orgueil meteorites. 

We will present maps of where carbonate and organic material is detected on Bennu and discuss our search for associations or correlations with boulders or other surface properties.

Acknowledgements

This material is based upon work supported by NASA under Contract NNM10AA11C issued through the New Frontiers Program. INAF participation was supported by Italian Space Agency grant agreement n. 2017-37-H.0. We are grateful to the entire OSIRIS-REx Team for making the encounter with Bennu possible.

References

[1] Lauretta, D.S. et al. (2017). OSIRIS-REx: Sample Return from Asteroid (101955) Bennu.  Space Sci. Rev. 212, 925–984.

[2] Rizk, B.  et al. OCAMS: the OSIRIS-REx camera suite. Space Sci Rev (2018) 214:26 https://doi.org/10.1007/s11214-017-0460-7

[3] Reuter, D.C. et al. (2018). The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu. Space Sci. Rev. 214, 54.

[4] V. E. Hamilton. VNIR-TIR spectroscopy of (101955) Bennu. This conference.

[5] Anders, Edward. Pre-biotic organic matter from comets and asteroids. Nature 342.6247 (1989): 255-257.

[6] Kaplan, H. H., et al. Evidence of Organics and Carbonates on (101955) Bennu. LPI 2326 (2020): 1050.

[7] Pieters, C.M., et al. Reflectance Experiment Laboratory (RELAB) Description and User's Manual. NASA Technical Reports Server. (2004). Document ID, 20040129713

[8] Kaplan, H.H., et al. Reflectance spectroscopy of insoluble organic matter (IOM) and carbonaceous meteorites. Meteorit Planet Sci, 54 (2019): 1051-1068. doi:10.1111/maps.13264