scispace - formally typeset
Search or ask a question

Showing papers by "Martin von Bergen published in 2019"


Journal ArticleDOI
TL;DR: In this paper, a pure culture of a bacterium, strain MG08 that grows on air at atmospheric concentrations of CH4 [1.86 parts per million volume (p.p.m.).
Abstract: The global atmospheric level of methane (CH4), the second most important greenhouse gas, is currently increasing by ∼10 million tons per year. Microbial oxidation in unsaturated soils is the only known biological process that removes CH4 from the atmosphere, but so far, bacteria that can grow on atmospheric CH4 have eluded all cultivation efforts. In this study, we have isolated a pure culture of a bacterium, strain MG08 that grows on air at atmospheric concentrations of CH4 [1.86 parts per million volume (p.p.m.v.)]. This organism, named Methylocapsa gorgona, is globally distributed in soils and closely related to uncultured members of the upland soil cluster α. CH4 oxidation experiments and 13C-single cell isotope analyses demonstrated that it oxidizes atmospheric CH4 aerobically and assimilates carbon from both CH4 and CO2. Its estimated specific affinity for CH4 (a0s) is the highest for any cultivated methanotroph. However, growth on ambient air was also confirmed for Methylocapsa acidiphila and Methylocapsa aurea, close relatives with a lower specific affinity for CH4, suggesting that the ability to utilize atmospheric CH4 for growth is more widespread than previously believed. The closed genome of M. gorgona MG08 encodes a single particulate methane monooxygenase, the serine cycle for assimilation of carbon from CH4 and CO2, and CO2 fixation via the recently postulated reductive glycine pathway. It also fixes dinitrogen and expresses the genes for a high-affinity hydrogenase and carbon monoxide dehydrogenase, suggesting that atmospheric CH4 oxidizers harvest additional energy from oxidation of the atmospheric trace gases carbon monoxide (0.2 p.p.m.v.) and hydrogen (0.5 p.p.m.v.).

116 citations


Journal ArticleDOI
TL;DR: It is suggested that dietary intervention using the novel synbiotic can alleviate HFD-induced weight gain and restore gut microbial ecosystem homeostasis phylogenetically and functionally.
Abstract: Objective The gut microbiota is an important influencing factor of metabolic health. Although dietary interventions with probiotics, prebiotics, and synbiotics can be effective means to regulate obesity and associated comorbidities, the underlying shifts in gut microbial communities, especially at the functional level, have not been characterized in great details. In this study, we sought to investigate the effects of synbiotics on the regulation of gut microbiota and the alleviation of high-fat diet (HFD)-induced metabolic disorders in mice. Methods Specific pathogen-free (SPF) male C57BL/6J mice were fed diets with either 10% (normal diet, ND) or 60% (high-fat diet, HFD) of total calories from fat (lard). Dietary interventions in the HFD-fed mice included (i) probiotic (Bifidobacterium animalis subsp. lactis and Lactobacillus paracasei subsp. paracasei DSM 46331), (ii) prebiotic (oat β-glucan), and (iii) synbiotic (a mixture of i and ii) treatments for 12 weeks. Besides detailed characterization of host metabolic parameters, a multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing, metaproteomics and targeted metabolomics analysis. Results The synbiotic intervention significantly reduced body weight gain and alleviated features of metabolic complications. At the phylogenetic level, the synbiotic treatment significantly reversed HFD-induced changes in microbial populations, both in terms of richness and the relative abundance of specific taxa. Potentially important species such as Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of the synbiotic were identified. At the functional level, short-chain fatty acid and bile acid profiles revealed that all dietary interventions significantly restored cecal levels of acetate, propionate, and butyrate, while the synbiotic treatment reduced the bile acid pools most efficiently. Metaproteomics revealed that the effects of the synbiotic intervention might be mediated through metabolic pathways involved in carbohydrate, amino acid, and energy metabolisms. Conclusions Our results suggested that dietary intervention using the novel synbiotic can alleviate HFD-induced weight gain and restore gut microbial ecosystem homeostasis phylogenetically and functionally.

83 citations


Journal ArticleDOI
TL;DR: It is demonstrated that bacterial cell components stimulate host 5- HT secretion and program the differentiation of colonic intestinal stem progenitors toward the secretory 5-HT-producing lineage, suggesting that the presence of C. ramosum in the gut promotes 5-hydroxytryptamine secretion and thereby could facilitates intestinal lipid absorption and the development of obesity.
Abstract: Peripheral serotonin (5-hydroxytryptamine: 5-HT) synthesized in the intestine by enterochromaffin cells (ECs), plays an important role in the regulation of peristaltic of the gut, epithelial secretion and promotes the development and maintenance of the enteric neurons. Recent studies showed that the indigenous gut microbiota modulates 5-HT signalling and that ECs use sensory receptors to detect dietary and microbiota-derived signals from the lumen to subsequently transduce the information to the nervous system. We hypothesized that Clostridium ramosum by increasing gut 5-HT availability consequently contributes to high-fat diet-induced obesity. Using germ-free mice and mice monoassociated with C. ramosum, intestinal cell lines and mouse organoids, we demonstrated that bacterial cell components stimulate host 5-HT secretion and program the differentiation of colonic intestinal stem progenitors toward the secretory 5-HT-producing lineage. An elevated 5-HT level regulates the expression of major proteins involved in intestinal fatty acid absorption in vitro, suggesting that the presence of C. ramosum in the gut promotes 5-HT secretion and thereby could facilitates intestinal lipid absorption and the development of obesity.

77 citations


Journal ArticleDOI
20 Feb 2019-PLOS ONE
TL;DR: In this paper, the authors analyzed a panel of 180 metabolites in human sperm and seminal plasma and elucidated their associations with spermiogram parameters using a targeted LC-MS/MS approach.
Abstract: In 50% of all infertility cases, the male is subfertile or infertile, however, the underlying mechanisms are often unknown. Even when assisted reproductive procedures such as in vitro fertilization and intracytoplasmic sperm injection are performed, the causes of male factor infertility frequently remain elusive. Since the overall activity of cells is closely linked to their metabolic capacity, we analyzed a panel of 180 metabolites in human sperm and seminal plasma and elucidated their associations with spermiogram parameters. Therefore, metabolites from a group of 20 healthy donors were investigated using a targeted LC-MS/MS approach. The correlation analyses of the amino acids, biogenic amines, acylcarnitines, lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and sugars from sperm and seminal plasma with standard spermiogram parameters revealed that metabolites in sperm are closely related to sperm motility, whereas those in seminal plasma are closely related to sperm concentration and morphology. This study provides essential insights into the metabolome of human sperm and seminal plasma and its associations with sperm functions. This metabolomics technique could be a promising screening tool to detect the factors of male infertility in cases where the cause of infertility is unclear.

48 citations


Journal ArticleDOI
TL;DR: This study revealed that hitherto unrecognized Bacteria were involved in a chitin-degrading microbial food web of an agricultural soil, trophic interactions were substantially shaped by the oxygen availability, and detectable predation was restricted to oxic conditions.
Abstract: Chitin provides a valuable carbon and nitrogen source for soil microorganisms and is a major component of particulate organic matter in agricultural soils. To date, there is no information on interaction and interdependence in chitin-degrading soil microbiomes. Since microbial chitin degradation occurs under both oxic and anoxic conditions and both conditions occur simultaneously in soil, the comparison of the active microbiome members under both conditions can reveal key players for the overall degradation in aerated soil. A time-resolved 16S rRNA stable isotope probing experiment was conducted with soil material from the top soil layer of a wheat-covered field. [13CU]-chitin was largely mineralized within 20 days under oxic conditions. Cellvibrio, Massilia, and several Bacteroidetes families were identified as initially active chitin degraders. Subsequently, Planctomycetes and Verrucomicrobia were labeled by assimilation of 13C carbon either from [13CU]-chitin or from 13C-enriched components of primary chitin degraders. Bacterial predators (e.g., Bdellovibrio and Bacteriovorax) were labeled, too, and non-labeled microeukaryotic predators (Alveolata) increased their relative abundance toward the end of the experiment (70 days), indicating that chitin degraders were subject to predation. Trophic interactions differed substantially under anoxic and oxic conditions. Various fermentation types occurred along with iron respiration. While Acidobacteria and Chloroflexi were the first taxa to be labeled, although at a low 13C level, Firmicutes and uncultured Bacteroidetes were predominantly labeled at a much higher 13C level during the later stages, suggesting that the latter two bacterial taxa were mainly responsible for the degradation of chitin and also provided substrates for iron reducers. Eventually, our study revealed that (1) hitherto unrecognized Bacteria were involved in a chitin-degrading microbial food web of an agricultural soil, (2) trophic interactions were substantially shaped by the oxygen availability, and (3) detectable predation was restricted to oxic conditions. The gained insights into trophic interactions foster our understanding of microbial chitin degradation, which is in turn crucial for an understanding of soil carbon dynamics.

43 citations


Journal ArticleDOI
TL;DR: A new targeted GC-MS/MS method was developed for analyzing 64 PAHs including compounds with a molecular weight >300, as well as nitro-, methyl-, oxy- and hydroxyl derivatives in a single analysis, enabling the reliable quantification of a more comprehensive set of PAHs bound on PM and thus will facilitate and improve the risk assessment of them.

38 citations


Journal ArticleDOI
TL;DR: Structural insights are given into the direct interaction of PPARγ with MEHP and MEOHP and it is shown that the DEHP transformation products may modulate the lipid metabolism through PParγ pathways.
Abstract: Rationale The most frequently occurring phthalate, di(2-ethylhexyl) phthalate (DEHP), causes adverse effects on glucose homeostasis and insulin sensitivity in several cell models and epidemiological studies. However, thus far, there is no information available on the molecular interaction of phthalates and one of the key regulators of the metabolism, the peroxisome proliferator-activated receptor gamma (PPARγ). Since the endogenous ligand of PPARγ, 15-deoxy-delta-12,14-prostaglandin J2 (15Δ-PGJ2 ), features structural similarity to DEHP and its main metabolites produced in human hepatic metabolism, mono(2-ethylhexyl) phthalate (MEHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), we tested the hypothesis of direct interactions between PPARγ and DEHP or its transformation products. Methods Hydrogen/deuterium exchange mass spectrometry (HDX-MS) and docking were conducted to obtain structural insights into the interactions and surface plasmon resonance (SPR) analysis to reveal information about binding levels. To confirm the activation of PPARγ upon ligand binding on the cellular level, the GeneBLAzer® bioassay was performed. Results HDX-MS and SPR analyses demonstrated that the metabolites MEHP and MEOHP, but not DEHP itself, bind to the ligand binding pocket of PPARγ. This binding leads to typical activation-associated conformational changes, as observed with its endogenous ligand 15Δ-PGJ2 . Furthermore, the reporter gene assay confirmed productive interaction. DEHP was inactive up to a concentration of 14 μM, while the metabolites MEHP and MEOHP were active at low micromolar concentrations. Conclusions In summary, this study gives structural insights into the direct interaction of PPARγ with MEHP and MEOHP and shows that the DEHP transformation products may modulate the lipid metabolism through PPARγ pathways.

35 citations


Journal ArticleDOI
TL;DR: The results suggest that class II BCRs catalyze electron transfer to the aromatic ring, yielding a cyclic 1,5-dienoyl-CoA via two flavin-based electron bifurcation events.
Abstract: Reversible biological electron transfer usually occurs between redox couples at standard redox potentials ranging from +0.8 to −0.5 V. Dearomatizing benzoyl-CoA reductases (BCRs), key enzymes of the globally relevant microbial degradation of aromatic compounds at anoxic sites, catalyze a biological Birch reduction beyond the negative limit of this redox window. The structurally characterized BamBC subunits of class II BCRs accomplish benzene ring reduction at an active-site tungsten cofactor; however, the mechanism and components involved in the energetic coupling of endergonic benzene ring reduction have remained hypothetical. We present a 1-MDa, membrane-associated, Bam[(BC) 2 DEFGHI] 2 complex from the anaerobic bacterium Geobacter metallireducens harboring 4 tungsten, 4 zinc, 2 selenocysteines, 6 FAD, and >50 FeS cofactors. The results suggest that class II BCRs catalyze electron transfer to the aromatic ring, yielding a cyclic 1,5-dienoyl-CoA via two flavin-based electron bifurcation events. This work expands our knowledge of energetic couplings in biology by high-molecular-mass electron bifurcating machineries.

30 citations


Journal ArticleDOI
TL;DR: Functional changes in the distal colon caused by DSS treatment were more pronounced in the mucus-associated microbiota than in the microbiota present in thedistal colon content.
Abstract: Using the acute dextran sulfate sodium (DSS)-induced colitis model, studies have demonstrated that intestinal inflammation is accompanied by major changes in the composition of the intestinal microbiota. Only little is known about the microbial changes and more importantly their functional impact in the chronic DSS colitis model. We used a refined model of chronic DSS-induced colitis that reflects typical symptoms of the human disease without detrimental weight loss usually observed in DSS models. We sampled cecum and colon content as well as colon mucus from healthy and diseased mouse cohorts ( n = 12) and applied 16S rRNA gene sequencing and metaproteomics. An increase of Prevotella sp. in both colon content and mucus was observed. Functional differences were observed between sample types demonstrating the importance of separately sampling lumen content and mucus. The abundance of Desulfovibrio, a sulfate-reducing bacterium, was positively associated with the carbon metabolism. Lachnoclostridium was positively correlated to both vitamin B6 and tryptophan metabolism. In summary, functional changes in the distal colon caused by DSS treatment were more pronounced in the mucus-associated microbiota than in the microbiota present in the distal colon content.

30 citations


Journal ArticleDOI
03 Dec 2019
TL;DR: This study shows that SIHUMIx showed high structural stability when TT changed—even four-fold, which suggests that TTs did not interfere with the structure of the community to a certain degree.
Abstract: Many functions in host–microbiota interactions are potentially influenced by intestinal transit times, but little is known about the effects of altered transition times on the composition and functionality of gut microbiota. To analyze these effects, we cultivated the model community SIHUMIx in bioreactors in order to determine the effects of varying transit times (TT) on the community structure and function. After five days of continuous cultivation, we investigated the influence of different medium TT of 12 h, 24 h, and 48 h. For profiling the microbial community, we applied flow cytometric fingerprinting and revealed changes in the community structure of SIHUMIx during the change of TT, which were not associated with changes in species abundances. For pinpointing metabolic alterations, we applied metaproteomics and metabolomics and found, along with shortening the TT, a slight decrease in glycan biosynthesis, carbohydrate, and amino acid metabolism and, furthermore, a reduction in butyrate, methyl butyrate, isobutyrate, valerate, and isovalerate concentrations. Specifically, B. thetaiotaomicron was identified to be affected in terms of butyrate metabolism. However, communities could recover to the original state afterward. This study shows that SIHUMIx showed high structural stability when TT changed—even four-fold. Resistance values remained high, which suggests that TTs did not interfere with the structure of the community to a certain degree.

29 citations


Journal ArticleDOI
TL;DR: Investigation of microbial methane oxidation at the sediment-water interface of a shallow marine methane seep demonstrated that various members of the gammaproteobacterial family Methylococcaceae were the key players for methane oxidation, catalyzing the first reaction step to methanol.
Abstract: Release of abiotic methane from marine seeps into the atmosphere is a major source of this potent greenhouse gas. Methanotrophic microorganisms in methane seeps use methane as carbon and energy source, thus significantly mitigating global methane emissions. Here we investigated microbial methane oxidation at the sediment-water interface of a shallow marine methane seep. Metagenomics and metaproteomics, combined with 13C-methane stable isotope probing, demonstrated that various members of the gammaproteobacterial family Methylococcaceae were the key players for methane oxidation, catalyzing the first reaction step to methanol. We observed a transfer of carbon to methanol-oxidizing methylotrophs of the betaproteobacterial family Methylophilaceae, suggesting an interaction between methanotrophic and methylotrophic microorganisms that allowed for rapid methane oxidation. From our microcosms, we estimated methane oxidation rates of up to 871 nmol of methane per gram sediment and day. This implies that more than 50% of methane at the seep is removed by microbial oxidation at the sediment-water interface, based on previously reported in situ methane fluxes. The organic carbon produced was further assimilated by different heterotrophic microbes, demonstrating that the methane-oxidizing community supported a complex trophic network. Our results provide valuable eco-physiological insights into this specialized microbial community performing an ecosystem function of global relevance.

Journal ArticleDOI
TL;DR: Pseudomonas spp.
Abstract: Anaerobic degradation (AD) of heterogeneous agricultural substrates is a complex process involving a diverse microbial community. While microbial community composition of a variety of biogas plants (BPs) is well described, little is known about metabolic processes and microbial interaction patterns. Here, we analyzed 16 large-scale BPs using metaproteomics. All metabolic steps of AD were observed in the metaproteome, and multivariate analyses indicated that they were shaped by temperature, pH, volatile fatty acid content and substrate types. Biogas plants could be subdivided into hydrogenotrophic, acetoclastic or a mixture of both methanogenic pathways based on their process parameters, taxonomic and functional metaproteome. Network analyses showed large differences in metabolic and microbial interaction patterns. Both, number of interactions and interaction partners were highly dependent on the prevalent methanogenic pathway for most species. Nevertheless, we observed a highly conserved metabolism of different abundant Pseudomonas spp. for all BPs indicating a key role during AD in carbohydrate hydrolysis irrespectively of variabilities in substrate input and process parameters. Thus, Pseudomonas spp. are of high importance for robust and versatile AD food webs, which highlight a large variety of downstream metabolic processes for their respective methanogenic pathways.

Journal ArticleDOI
TL;DR: Wolffia globosa Mankai duckweed may serve as an emerging alternative plant protein source with potential beneficial postprandial glycemic effects as well as a novel green aquatic plant thought to provide a dietary source for high-quality protein.
Abstract: OBJECTIVE To compare the postprandial and overnight glycemic response using a novel green aquatic plant thought to provide a dietary source for high-quality protein, with an iso-carbohydrate/protein/caloric dairy shake. RESEARCH DESIGN AND METHODS This is a randomized controlled crossover trial among 20 abdominally obese participants (age 51.4 years; fasting plasma glucose 110.9 mg/dL), who were allocated to replace dinner with either, first, a green shake containing Wolffia globosa duckweed (Mankai: specific-strain) or an iso-carbohydrate/protein/calorie yogurt shake. A 2-week flash glucose-monitoring system was used to assess postmeal glucose dynamics (6 net administration days; 97 observation days in total). We further obtained from each participant dietary/daily activity/satiety-scale/sleep logs. Participants were recruited from the green-Mediterranean diet arm of the 18-month Dietary Intervention Randomized Controlled Trial-Polyphenols Unprocessed (DIRECT-PLUS) study. RESULTS Wolffia globosa Mankai elicited a lower postprandial glucose peak compared with yogurt (∆peak = 13.4 ± 9.2 vs. 19.3 ± 15.1 mg/dL; P = 0.044), which occurred later (77.5 ± 29.2 vs. 59.2 ± 28.4 min; P = 0.037) and returned faster to baseline glucose levels (135.8 ± 53.1 vs. 197.5 ± 70.2 min; P = 0.012). The mean post–net incremental area under the curve (netAUC) was lower with Wolffia globosa up to 60 and 180 min (netAUC 60 min 185.1 ± 340.1 vs. 441.4 ± 336.5 mg/dL/min, P = 0.005; netAUC180 min: 707.9 ± 1,428.5 vs.1,576.6 ± 1,810.1 mg/dL/min, P = 0.037). A Wolffia globosa –based shake replacing dinner resulted in lower next-morning fasting glucose levels (83.2 ± 0.8 vs. 86.6 ± 13 mg/dL; P = 0.041). Overall, postprandial glucose levels from the shake administration until the next morning were lower in the Wolffia globosa Mankai green shake compared with the yogurt shake ( P P = 0.72), and satiety rank was slightly higher for the Wolffia globosa shake compared with the yogurt shake (7.5 vs. 6.5; P = 0.035). CONCLUSIONS Wolffia globosa Mankai duckweed may serve as an emerging alternative plant protein source with potential beneficial postprandial glycemic effects.

Journal ArticleDOI
TL;DR: A multi-omics approach involving proteomics, metabolomics and SH2 profiling proved useful to obtain insights into NMs Mode of Actions and key physico-chemical properties strongly correlating with NM toxicity were identified.
Abstract: Nanomaterials (NMs) can be fine-tuned in their properties resulting in a high number of variants, each requiring a thorough safety assessment. Grouping and categorization approaches that would reduce the amount of testing are in principle existing for NMs but are still mostly conceptual. One drawback is the limited mechanistic understanding of NM toxicity. Thus, we conducted a multi-omics in vitro study in RLE-6TN rat alveolar epithelial cells involving 12 NMs covering different materials and including a systematic variation of particle size, surface charge and hydrophobicity for SiO2 NMs. Cellular responses were analyzed by global proteomics, targeted metabolomics and SH2 profiling. Results were integrated using Weighted Gene Correlation Network Analysis (WGCNA). Cluster analyses involving all data sets separated Graphene Oxide, TiO2_NM105, SiO2_40 and Phthalocyanine Blue from the other NMs as their cellular responses showed a high degree of similarities, although apical in vivo results may differ. SiO2_7 behaved differently but still induced significant changes. In contrast, the remaining NMs were more similar to untreated controls. WGCNA revealed correlations of specific physico-chemical properties such as agglomerate size and redox potential to cellular responses. A key driver analysis could identify biomolecules being highly correlated to the observed effects, which might be representative biomarker candidates. Key drivers in our study were mainly related to oxidative stress responses and apoptosis. Our multi-omics approach involving proteomics, metabolomics and SH2 profiling proved useful to obtain insights into NMs Mode of Actions. Integrating results allowed for a more robust NM categorization. Moreover, key physico-chemical properties strongly correlating with NM toxicity were identified. Finally, we suggest several key drivers of toxicity that bear the potential to improve future testing and assessment approaches.

Journal ArticleDOI
TL;DR: It is suggested that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl-CoA that is captured and decarboxylated by highly abundant PCD containing a prenylated flavin cofactor.
Abstract: The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o-phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ-proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short-lived phthaloyl-CoA by an ATP-dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl-CoA by an UbiD-like phthaloyl-CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate-reducing Desulfobacula toluolica, strain NaphS2, and other δ-proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl-CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl-CoA, the possibly most unstable CoA ester in biology.

Journal ArticleDOI
TL;DR: It is proved that the TPP approach facilitates the identification of protein-substrate interactions of strictly anaerobic reductive dehalogenases and probably their regulators, and therefore has the potential to elucidate one of the unresolved fields in research on organohalide-respiring bacteria.

Journal ArticleDOI
TL;DR: It is anticipated that the synergistic action of the treatment‐specific effects is the key driver in elevated osteogenesis.
Abstract: The development of novel bioactive biomaterials is urgently needed to meet the needs of an aging population. Both sulfated hyaluronic acid and dexamethasone are candidates for the functionalization of bone grafts, as they have been shown to enhance the differentiation of osteoblasts from bone marrow stromal cells in vitro and in vivo. However, the underlying mechanisms are not fully understood. Furthermore, studies combining different approaches to assess synergistic potentials are rare. In this study, we aim to gain insights into the mode of action of both sulfated hyaluronic acid and dexamethasone by a comprehensive analysis of the cellular fraction, released matrix vesicles, and the extracellular matrix, combining classical biochemical assays with mass spectrometry-based proteomics, supported by novel bioinformatical computations. We found elevated differentiation levels for both treatments, which were further enhanced by a combination of sulfated hyaluronic acid and dexamethasone. Single treatments revealed specific effects on osteogenic differentiation. Dexamethasone activates signalling pathways involved in the differentiation of osteoblasts, for example, CXC-motif chemokine receptor type 4 and mitogen-activated protein kinases. The effects of sulfated hyaluronic acid were predominantly linked to an alteration in the composition of the extracellular matrix, affecting the synthesis, secretion, and/or activity of fibrillary (fibronectin and thrombospondin-2) and nonfibrillary (transglutaminase-2, periostin, and lysyloxidase) extracellular matrix components, including proteases and their inhibitors (matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-3). The effects were treatment specific, and less additive or contrary effects were found. Thus, we anticipate that the synergistic action of the treatment-specific effects is the key driver in elevated osteogenesis.

Journal ArticleDOI
TL;DR: The data indicate that continued synthetic glucocorticoid exposure in zebrafish deteriorates cellular trafficking processes in the regenerating fin, which interferes with appropriate tissue restoration upon injury.
Abstract: Long-term glucocorticoid administration in patients undergoing immunosuppressive and anti-inflammatory treatment is accompanied by impaired bone formation and increased fracture risk. Furthermore, glucocorticoid treatment can lead to impaired wound healing and altered cell metabolism. Recently, we showed that exposure of zebrafish to the glucocorticoid prednisolone during fin regeneration impacts negatively on the length, bone formation, and osteoblast function of the regenerate. The underlying cellular and molecular mechanisms of impairment, however, remain incompletely understood. In order to further elucidate the anti-regenerative effects of continued glucocorticoid exposure on fin tissues, we performed proteome profiling of fin regenerates undergoing prednisolone treatment, in addition to profiling of homeostatic fin tissue and fins undergoing undisturbed regeneration. By using LC-MS (liquid chromatography-mass spectrometry) we identified more than 6,000 proteins across all tissue samples. In agreement with previous reports, fin amputation induces changes in chromatin structure and extracellular matrix (ECM) composition within the tissue. Notably, prednisolone treatment leads to impaired expression of selected ECM components in the fin regenerate. Moreover, the function of ion transporting ATPases and other proteins involved in macromolecule and vesicular transport mechanisms of the cell appears to be altered by prednisolone treatment. In particular, acidification of membrane-enclosed organelles such as lysosomes is inhibited. Taken together, our data indicate that continued synthetic glucocorticoid exposure in zebrafish deteriorates cellular trafficking processes in the regenerating fin, which interferes with appropriate tissue restoration upon injury.

Journal ArticleDOI
TL;DR: This is the first study demonstrating that elevated gestational IL-13 increases the risk for children to develop behavioral difficulties, and analyses suggest that a reduced supply of gestational PC aa C38:6 contributes to elevated GestationalIL-13 leading to behavioral sequelae in the offspring.
Abstract: Maternal immune activation during fetal development leads to behavioral and psychological disorders in the offspring. Concomitantly, insufficient supply of polyunsaturated fatty acids (PUFAs) is suspected to contribute to early neuronal maldevelopment due to the immune modulatory capabilities of PUFAs. However, human data are missing considering both of these aspects and their impact on children’s behavioral outcomes. In line, this study aimed to elucidate the influence of gestational cytokines and PUFA-containing lipids during late pregnancy on behavioral sequelae in childhood, particularly focusing on an immune activation shaped by a history of maternal atopic diseases instead of a pathogen-mediated immune response. Based on the prospective mother-child cohort LINA we assessed the unstimulated blood plasma cytokine profiles and concentrations of PUFA-containing lipids of 293 mothers at the 34th week of pregnancy. Maternal history of atopic diseases was obtained from questionnaires and behavior in eight-year-old children was assessed by the standardized Strength and Difficulties Questionnaires generating scores for hyperactivity/inattention, emotional symptoms, conduct problems, and peer relationship problems. Elevated IL-13 increased the risk for the child to show behavioral difficulties, in particular, hyperactive/inattentive behavior (adj.OR (95% CI): 2.47 (1.51-4.02), n=255 vs. 38) at the age of eight years. Although the presence of maternal atopic dermatitis (AD) was associated with increased gestational IL-13 concentrations (adj.MR (95% CI): 1.17 (1.04-1.32)), no effect on children’s behavioral difficulties was observed. However, a decrease in the PUFA containing lipid species PC aa C38:6 was not only associated with an increased gestational IL 13 concentration but also mediates the indirect effect of low PC aa C38:6 concentrations on children’s abnormal behavior independent of maternal AD. We additionally assessed whether maternal IL-13 and PC aa C38:6 concentrations translate their effect by altering children’s cord blood PC aa C38:6 and IL-13. While also the children’s cord blood IL-13 was related to children’s behavior, no effect of children’s PC aa C38:6 was observed. This is the first study demonstrating that elevated gestational IL-13increases the risk for children to develop behavioral difficulties. Analyses suggest that a reduced supply of gestational PC aa C38:6 contributes to elevated gestational IL-13 leading to behavioral sequelae in the offspring.

Journal ArticleDOI
TL;DR: The results indicate that high-molecular class II BCR metalloenzyme machineries are remarkably conserved in strictly anaerobic bacteria with regard to subunit architecture and cofactor content, but their subcellular localization and electron acceptor preference may differ as a result of adaptations to variable energy metabolisms.
Abstract: Benzoyl-CoA reductases (BCRs) catalyse a key reaction in the anaerobic degradation pathways of monocyclic aromatic substrates, the dearomatization of benzoyl-CoA (BzCoA) to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA) at the negative redox potential limit of diffusible enzymatic substrate/product couples (E°' = -622 mV). A 1-MDa class II BCR complex composed of the BamBCDEGHI subunits has so far only been isolated from the Fe(III)-respiring Geobacter metallireducens. It is supposed to drive endergonic benzene ring reduction at an active site W-pterin cofactor by flavin-based electron bifurcation. Here, we identified multiple copies of putative genes encoding the structural components of a class II BCR in sulfate reducing, Fe(III)-respiring and syntrophic bacteria. A soluble 950 kDa Bam[(BC)2 DEFGHI]2 complex was isolated from extracts of Desulfosarcina cetonica cells grown with benzoate/sulfate. Metal and cofactor analyses together with the identification of conserved binding motifs gave rise to 4 W-pterins, two selenocysteines, six flavin adenine dinucleotides, four Zn, and 48 FeS clusters. The complex exhibited 1,5-dienoyl-CoA-, NADPH- and ferredoxin-dependent oxidoreductase activities. Our results indicate that high-molecular class II BCR metalloenzyme machineries are remarkably conserved in strictly anaerobic bacteria with regard to subunit architecture and cofactor content, but their subcellular localization and electron acceptor preference may differ as a result of adaptations to variable energy metabolisms.

Journal ArticleDOI
TL;DR: Results of this study indicate that the analysed cathepsins are not susceptible to toxins other than the known peptide-like inhibitors, however, specific cathepsypsin inhibitors might be identified using the zebrafish embryo.
Abstract: Cathepsins have been proposed as biomarkers of chemical exposure in the zebrafish embryo model but it is unclear whether they can also be used to detect sublethal stress. The present study evaluates three cathepsin types as candidate biomarkers in zebrafish embryos. In addition to other functions, cathepsins are also involved in yolk lysosomal processes for the internal nutrition of embryos of oviparous animals until external feeding starts. The baseline enzyme activity of cathepsin types H, C and L during the embryonic development of zebrafish in the first 96 h post fertilisation was studied. Secondly, the effect of leupeptin, a known cathepsin inhibitor, and four embryotoxic xenobiotic compounds with different modes of action (phenanthrene-baseline toxicity; rotenone-an inhibitor of electron transport chain in mitochondria; DNOC (Dinitro-ortho-cresol)-an inhibitor of ATP synthesis; and tebuconazole-a sterol biosynthesis inhibitor) on in vivo cathepsin H, C and L total activities have been tested. The positive control leupeptin showed effects on cathepsin L at a 20-fold lower concentration compared to the respective LC50 (0.4 mM) of the zebrafish embryo assay (FET). The observed effects on the enzyme activity of the four other xenobiotics were not or just slightly more sensitive (factor of 1.5 to 3), but the differences did not reach statistical significance. Results of this study indicate that the analysed cathepsins are not susceptible to toxins other than the known peptide-like inhibitors. However, specific cathepsin inhibitors might be identified using the zebrafish embryo.

Journal ArticleDOI
29 Aug 2019
TL;DR: Corrected Spearman correlation coefficients between individual AA concentrations and weight-for-height and length velocity from 6 to 12 mo of age were positively correlated for glycine, isoleucine, proline, serine, threonine, tyrosine, and valine.
Abstract: Serum amino acid (AA) concentrations are correlated with childhood stunting, but their relation to linear growth velocity has not been explored. This was a secondary analysis of a clinical trial where Malawian infants aged 6–12 mo were given a legume supplement providing 8.2 g/d of protein; anthropometry was conducted at multiple intervals, and fasted serum AA concentrations were measured at 12 mo of age. Lysine, proline, tryptophan, tyrosine, and valine concentrations were higher in infants with a linear growth velocity z-score >0 than those <0. Corrected Spearman correlation coefficients between individual AA concentrations and weight-for-height and length velocity from 6 to 12 mo of age were positively correlated for glycine, isoleucine, proline, serine, threonine, tyrosine, and valine. Additionally, weight-for-height was correlated with arginine, asparagine, glutamine, leucine, lysine, methionine, and phenylalanine. The observed associations suggest that testing the hypothesis that essential AA provision will reduce linear growth faltering is warranted. This trial was registered at clinicaltrials.gov as {"type":"clinical-trial","attrs":{"text":"NCT02472262","term_id":"NCT02472262"}}NCT02472262.