scispace - formally typeset
Search or ask a question
Institution

Capital Normal University

EducationBeijing, China
About: Capital Normal University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Terahertz radiation & Quantum entanglement. The organization has 11441 authors who have published 11988 publications receiving 159071 citations. The organization is also known as: Shǒudū Shīfàn Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: This study shows that OsNRT1.1A (OsNPF6.3), a member of the rice (Oryza sativa) nitrate transporter 1/peptide transporter family, is involved in regulating N utilization and flowering, providing a target to produce high yield and early maturation simultaneously.
Abstract: Nitrogen (N) is a major driving force for crop yield improvement, but application of high levels of N delays flowering, prolonging maturation and thus increasing the risk of yield losses. Therefore, traits that enable utilization of high levels of N without delaying maturation will be highly desirable for crop breeding. Here, we show that OsNRT1.1A (OsNPF6.3), a member of the rice (Oryza sativa) nitrate transporter 1/peptide transporter family, is involved in regulating N utilization and flowering, providing a target to produce high yield and early maturation simultaneously. OsNRT.1A has functionally diverged from previously reported NRT1.1 genes in plants and functions in upregulating the expression of N utilization-related genes not only for nitrate but also for ammonium, as well as flowering-related genes. Relative to the wild type, osnrt1.1a mutants exhibited reduced N utilization and late flowering. By contrast, overexpression of OsNRT1.1A in rice greatly improved N utilization and grain yield, and maturation time was also significantly shortened. These effects were further confirmed in different rice backgrounds and also in Arabidopsis thaliana Our study paves a path for the use of a single gene to dramatically increase yield and shorten maturation time for crops, outcomes that promise to substantially increase world food security.

201 citations

Journal ArticleDOI
TL;DR: In this paper, a planar gold film with a thickness of 100 nm is used to construct a V-shaped antenna array for light propagation manipulation and filtering in planar planar optical elements.
Abstract: Various ultrathin planar optical elements, including cylindrical lens, spherical lens, and phase holograms, are designed based on the interface phase modulation of antenna resonances in the terahertz (THz) range. The focusing and imaging performance of the lenses and image-reconstruction ability of the pure phase holograms are demonstrated experimentally. In contrast to conventional bulky optical elements where curve surfaces are used to control the light propagation, the manipulations of light propagation for these thin planar optical elements are achieved through designed arrays of complementary V-shaped antennas in the planar gold films with a thickness of 100 nm (1/4000th of the wavelength of the illuminating light). The adoption of the complementary V-shaped antennas makes the optical elements have double functions: light propagation manipulation and filtering, which improves the performance of the optical elements by blocking the disturbance from the direct transmission. This research is a significant step towards the reduction of the THz elements size and, therefore, to the development of micro-integrated THz systems and to other applications where the compaction is necessary. The approach used here can be expanded to multifarious optical elements in different wave bands.

200 citations

Journal ArticleDOI
TL;DR: In this article, very recent developments in several systems of fused ring-based electron acceptors, such as halogenated (sub or subna)phthalocyanine, imide-functionalized rylene, and linear fused-rings end capped with electron deficient blocks, are reviewed.
Abstract: In the past two years, non-fullerene acceptors including polymers and small molecules have become the focus of many research efforts. Fullerene-free organic solar cells (OSCs) have shown efficiencies of up to 6.8% for solution-processed devices, and even up to 8.4% for vacuum-deposited devices, which have been significantly improved relative to those disclosed 2 years ago (generally <4%). Non-fullerene acceptor materials are a new focus in the OSC field. Tailoring extended fused-rings with electron-deficient groups is an effective strategy for design of acceptors. Here, very recent developments in several systems of fused ring-based electron acceptors, such as halogenated (sub or subna)phthalocyanine, imide-functionalized rylene, and linear fused-rings end capped with electron deficient blocks, are reviewed.

200 citations

Journal ArticleDOI
TL;DR: Impacts of the central South-to-North Water Diversion on GW storage recovery in Beijing within the context of climate variability and other policies are shown.
Abstract: Groundwater (GW) overexploitation is a critical issue in North China with large GW level declines resulting in urban water scarcity, unsustainable agricultural production, and adverse ecological impacts. One approach to addressing GW depletion was to transport water from the humid south. However, impacts of water diversion on GW remained largely unknown. Here, we show impacts of the central South-to-North Water Diversion on GW storage recovery in Beijing within the context of climate variability and other policies. Water diverted to Beijing reduces cumulative GW depletion by ~3.6 km3, accounting for 40% of total GW storage recovery during 2006–2018. Increased precipitation contributes similar volumes to GW storage recovery of ~2.7 km3 (30%) along with policies on reduced irrigation (~2.8 km3, 30%). This recovery is projected to continue in the coming decade. Engineering approaches, such as water diversions, will increasingly be required to move towards sustainable water management. The authors here address water sustainability in the greater area of Beijing, China. Specifically, the positive effects towards Beijing groundwater levels via water diversion from the Yangtze River to the North are shown.

200 citations

Journal ArticleDOI
TL;DR: In this scheme, the controlled quantum teleportation transmits Alice's message without revealing any information to a potential eavesdropper and there is not a transmission of the qubit carrying the secret message between Alice and Bob in the public channel, it is completely secure for controlled and direct secret communication if perfect quantum channel is used.
Abstract: We present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state of a 2-level particle is faithfully transmitted from a sender Alice to a remote receiver Bob via an initially shared triplet of entangled particles under the control of the supervisor Charlie. The distributed entangled particles shared by Alice, Bob and Charlie function as a quantum information channel for faithful transmission. We also propose a controlled and secure direct communication scheme by means of this teleportation. After ensuring the security of the quantum channel, Alice encodes the secret message directly on a sequence of particle states and transmits them to Bob supervised by Charlie using this controlled quantum teleportation. Bob can read out the encoded message directly by the measurement on his qubit. In this scheme, the controlled quantum teleportation transmits Alice's message without revealing any information to a potential eavesdropper. Because there is not a transmission of the qubit carrying the secret message between Alice and Bob in the public channel, it is completely secure for controlled and direct secret communication if perfect quantum channel is used. The special feature of this scheme is that the communication between two sides depends on the agreement of a third side to co-operate.

196 citations


Authors

Showing all 11499 results

NameH-indexPapersCitations
Lei Zhang135224099365
Chao Zhang127311984711
Tao Zhang123277283866
Bo Wang119290584863
Marinus H. van IJzendoorn11357756627
Jing Li9881143430
Lei Liu98204151163
Peng Zhang88157833705
Di Wu8796548697
Xi-Cheng Zhang7950225442
Wei Li78159231728
Gonzalo Giribet7539821000
Xiaoli Li6987720690
Mark T. Swihart6833016819
Kelin Wang6832816549
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

91% related

Wuhan University
92.8K papers, 1.6M citations

91% related

Zhejiang University
183.2K papers, 3.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022107
2021997
2020967
2019977
2018941