scispace - formally typeset
Search or ask a question
Institution

Capital Normal University

EducationBeijing, China
About: Capital Normal University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Terahertz radiation & Quantum entanglement. The organization has 11441 authors who have published 11988 publications receiving 159071 citations. The organization is also known as: Shǒudū Shīfàn Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors considered the zero Debye length asymptotic of solutions of isentropic quantum hydrodynamic equations for semiconductors at nano-size and showed that the current density consists of the divergence free vector field involved in the incompressible Euler equation and highly oscillating gradient vector field caused by the highly electric fields for small Debye lengths.
Abstract: In the present paper we consider the zero Debye length asymptotic of solutions of isentropic quantum hydrodynamic equations for semiconductors at nano-size and show that the current density consists of the divergence free vector field involved in the incompressible Euler equation and highly oscillating gradient vector field caused by the highly electric fields for small Debye length. This means that the quantum effects possibly may not dominate the charge transport within the channel of semiconductor devices (for instance MOSFET) of nano-size for isentropic quantum fluids.

47 citations

Journal ArticleDOI
TL;DR: This work reports a generalizable strategy for engineering novel multimodule split DNA constructs termed "CBSAzymes" that utilize a cooperative binding split aptamer (CBSA) as a highly target-responsive bioreceptor and a new, highly active split DNAzyme as an efficient signal reporter.
Abstract: Colorimetric aptamer-based sensors offer a simple means of on-site or point-of-care analyte detection. However, these sensors are largely incapable of achieving naked-eye detection, because of the poor performance of the target-recognition and signal-reporting elements employed. To address this problem, we report a generalizable strategy for engineering novel multimodule split DNA constructs termed "CBSAzymes" that utilize a cooperative binding split aptamer (CBSA) as a highly target-responsive bioreceptor and a new, highly active split DNAzyme as an efficient signal reporter. CBSAzymes consist of two fragments that remain separate in the absence of target, but effectively assemble in the presence of the target to form a complex that catalyzes the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid, developing a dark green color within 5 min. Such assay enables rapid, sensitive, and visual detection of small molecules, which has not been achieved with any previously reported split-aptamer-DNAzyme conjugates. In an initial demonstration, we generate a cocaine-binding CBSAzyme that enables naked-eye detection of cocaine at concentrations as low as 10 μM. Notably, CBSAzyme engineering is straightforward and generalizable. We demonstrate this by developing a methylenedioxypyrovalerone (MDPV)-binding CBSAzyme for visual detection of MDPV and 10 other synthetic cathinones at low micromolar concentrations, even in biological samples. Given that CBSAzyme-based assays are simple, label-free, rapid, robust, and instrument-free, we believe that such assays should be readily applicable for on-site visual detection of various important small molecules such as illicit drugs, medical biomarkers, and toxins in various sample matrices.

47 citations

Proceedings ArticleDOI
26 Jun 2013
TL;DR: A new reduction algorithm is presented that simultaneously extends Hermite's reduction for rational functions and the Hermite-like reduction for hyperexponential functions and yields a unique additive decomposition that allows to decide hyperexPonential integrability.
Abstract: We present a new reduction algorithm that simultaneously extends Hermite's reduction for rational functions and the Hermite-like reduction for hyperexponential functions. It yields a unique additive decomposition that allows to decide hyperexponential integrability. Based on this reduction algorithm, we design a new algorithm to compute minimal telescopers for bivariate hyperexponential functions. One of its main features is that it can avoid the costly computation of certificates. Its implementation outperforms Maple's function DEtools[Zeilberger]. We also derive an order bound on minimal telescopers that is tighter than the known ones.

47 citations

Journal ArticleDOI
TL;DR: In this article, the magnetic properties and magnetocaloric effect (MCE) in HoGa compound were studied experimentally and a considerable value of refrigerant capacity (RC) was obtained due to the large MCE over a wide temperature span.

47 citations

Journal ArticleDOI
TL;DR: A novel type of molecular tunnelling junction exploring the use of conjugated polymers, which are self-assembled into ultrathin films in a distinguishable ‘planar' manner from the traditional vertically oriented small-molecule monolayers is reported.
Abstract: Molecular electronics describes a field that seeks to implement electronic components made of molecular building blocks. To date, few studies have used conjugated polymers in molecular junctions despite the fact that they potentially transport charge more efficiently than the extensively investigated small-molecular systems. Here we report a novel type of molecular tunnelling junction exploring the use of conjugated polymers, which are self-assembled into ultrathin films in a distinguishable 'planar' manner from the traditional vertically oriented small-molecule monolayers. Electrical measurements on the junctions reveal molecular-specific characteristics of the polymeric molecules in comparison with less conjugated small molecules. More significantly, we decorate redox-active functionality into polymeric backbones, demonstrating a key role of redox centre in the modulation of charge transport behaviour via energy level engineering and external stimuli, and implying the potential of employing tailor-made polymeric components as alternatives to small molecules for future molecular-scale electronics.

47 citations


Authors

Showing all 11499 results

NameH-indexPapersCitations
Lei Zhang135224099365
Chao Zhang127311984711
Tao Zhang123277283866
Bo Wang119290584863
Marinus H. van IJzendoorn11357756627
Jing Li9881143430
Lei Liu98204151163
Peng Zhang88157833705
Di Wu8796548697
Xi-Cheng Zhang7950225442
Wei Li78159231728
Gonzalo Giribet7539821000
Xiaoli Li6987720690
Mark T. Swihart6833016819
Kelin Wang6832816549
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

91% related

Wuhan University
92.8K papers, 1.6M citations

91% related

Zhejiang University
183.2K papers, 3.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022107
2021997
2020967
2019977
2018941