scispace - formally typeset
Search or ask a question
Institution

Capital Normal University

EducationBeijing, China
About: Capital Normal University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Terahertz radiation & Quantum entanglement. The organization has 11441 authors who have published 11988 publications receiving 159071 citations. The organization is also known as: Shǒudū Shīfàn Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the Daohugou Biota and the salamander-bearing fossil assemblage are the same biota and thus developed from 168 to 152 Ma, i.e. from late Middle Jurassic to the early Late Jurassic.
Abstract: SHRIMP U-Pb zircon dating was carried out for the Daohugou Biota near Ningcheng of Inner Mongolia and for lavas overlying or underlying salamander-bearing strata at Reshuitang in Lingyuan of West Liaoning. The results suggest that the Daohugou Biota occurred at an interval from 168 Ma to 164–152 Ma. Both the Daohugou Biota and the salamander-bearing fossil assemblage are the same biota and thus developed from 168 to 152 Ma, i.e. from late Middle Jurassic to the early Late Jurassic. The Daohugou Biota-bearing rocks, resting on the Jiulongshan Formation in disconformity and being overlain in unconformity by Late Jurassic Tuchengzi Formation and Early Cretaceous rocks containing the Jehol Biota, are mainly composed of volcanic-sedimentary rocks in a normal sequence. It is recommended that the Daohugou Biota and the related stratigraphy should be correlated with the Tiaojishan Formation (Lanqi Formation in West Liaoning) or its synchronous rocks. It is suggested that the Daohugou Biota and the Jehol Biota would be neither taken into one biota nor considered as the earliest elements of the Jehol Biota. The Daohugou Biota and the related rocks and the Yixian Formation were respectively formed in different periods of volcanic-sedimentary tectonics.

121 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization, which eventually undermines the osmotic power generation and its energy conversion efficiency.
Abstract: Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion-channel-mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel-length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non-Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long-overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high-performance nanofluidic energy devices.

120 citations

Journal ArticleDOI
TL;DR: The results show that, at the leaf scale, the variations in chlorophyll a+b content, the leaf structure parameter, and the water content dominate the reflectance variance in the visible light, near infrared, and short-wave infrared regions, respectively.
Abstract: The objective of this paper is to investigate the sensitivity of reflectance to the variation in biochemical and biophysical variables at leaf, canopy, and regional scales using a modeling approach. The results show that, at the leaf scale, the variations in chlorophyll a+b content, the leaf structure parameter, and the water content dominate the reflectance variance in the visible light (VIS), near infrared (NIR), and short-wave infrared (SWIR) regions, respectively. At the canopy scale, the sensitivity of reflectance to variation in the leaf structure parameter is very slight. For sparse foliage cover (leaf area index ), LAI is the most important variable to the canopy reflectance. As LAI increases, the sensitivity of reflectance to variation in LAI is reduced to a very low value. Moreover, chlorophyll a+b, dry matter, and water content control the variation of canopy reflectance in the VIS, NIR, and SWIR regions, respectively. At the regional scale, the sensitivity of reflectance to variation in vegetation variables is highly influenced by the mixed pixels. Thirty-six vegetation indices (VIs) are chosen in this paper to illustrate the scale dependence of the estimation accuracy of vegetation variables. The results show that the relationships between the VIs and the variables highly depend on the observation scale. For chlorophyll a+b content estimation, transformed chlorophyll absorption in reflectance index (TCARI), Blue Green pigment Index, leaf chlorophyll index (LCI), modified Normalized Difference (mND705), and Plant Biochemical Index at the leaf scale and canopy scale of and TCARI at the canopy scale of are highly related. The correlation between the indices and chlorophyll content in the regional scale is, however, much lower. For water content estimation, disease water stress index (DSWI), leaf water vegetation index 2 (LWVI_2), moisture stress index (MSI), normalized difference infrared index (NDII), normalized difference water index (NDWI), hyperspectral perpendicular vegetation index (RVI), SWIR water stress index (SIWSI), SR water index (SRWI), and water index (WI) are good choices at the leaf scale and canopy scale of , while at the canopy scale of and the regional scale, the correlation between the indices and water content is very low. For LAI estimation, VIs, including the Greenness Index, simple ratio (SR), Normalized Difference VI, modified soil-adjusted vegetation index (MSAVI), modified triangular vegetation index 1 (MTVI1), modified triangular vegetation index 2 (MTVI2), optimized soil-adjusted vegetation index (OSAVI), modified chlorophyll absorption ratio index 1 (MCARI1), modified chlorophyll absorption ratio index 2 (MCARI2), Enhanced VI, LAI Determining Index, renormalized difference vegetation index (RDVI), Spectral Polygon VI, Wide Dynamic Range VI, and triangular vegetation index (TVI), have high correlation with LAI at the canopy scale of while a low correlation at the canopy scale of and the regional scale.

120 citations

Journal ArticleDOI
TL;DR: This work designed and synthesized the small organic molecule (E)-3-(4-(di-p-tolylamino)phenyl)-1-hydroxynaphthalen-2-yl (DPHP) with amphiphilic nature, which elaborately self-assembles into micrometer-sized hemispheres that simultaneously serves as the NIR emission medium with a photoluminescence quantum efficiency of ∼15.2%.
Abstract: Near-infrared (NIR) lasers are key components for applications, such as telecommunication, spectroscopy, display, and biomedical tissue imaging. Inorganic III–V semiconductor (GaAs) NIR lasers have achieved great successes but require expensive and sophisticated device fabrication techniques. Organic semiconductors exhibit chemically tunable optoelectronic properties together with self-assembling features that are well suitable for low-temperature solution processing. Major blocks in realizing NIR organic lasing include low stimulated emission of narrow-bandgap molecules due to fast nonradiative decay and exciton–exciton annihilation, which is considered as a main loss channel of population inversion for organic lasers under high carrier densities. Here we designed and synthesized the small organic molecule (E)-3-(4-(di-p-tolylamino)phenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one (DPHP) with amphiphilic nature, which elaborately self-assembles into micrometer-sized hemispheres that simultaneously serv...

119 citations

Journal ArticleDOI
TL;DR: Findings indicated that the incorporations of the pendant groups exerted no effect on the spectroscopic properties and selectivity of the parent fluorescent sensor, with the exception of HQ2, and X-ray crystal structures of ZnHQ's revealed that the auxiliary pendants groups at the 8 position participated in zinc coordination and were able to tune the affinities of HQ sensors.
Abstract: We have developed a series of di-2-picolylamine (DPA)-substituted quinoline sensors, HQ1–4, bearing a pendant ligand at the 8 position of quinoline. UV–vis spectra of HQ1–4 showed similar variations to that of HQ5 but with different varying extents upon the titration of zinc ions. Fluorescence intensities of HQ1, HQ3, and HQ4 were enhanced 4–6 times upon the addition of 1 equiv of zinc ions under an aqueous buffer. Somewhat unexpectedly, HQ2 is nonfluorescent in the presence of metal ions, including zinc ions. The affinities of HQ sensors are distributed in a broad range from nanomolarity to femtomolarity by varying the pendant ligands near the coordination unit. More importantly, these new sensors exhibited very high selectivity for Zn2+ over Na+, K+, Mg2+, and Ca2+ at the millimolar level and over other transition metal ions at the micromolar level, except for Cd2+. These findings indicated that the incorporations of the pendant groups exerted no effect on the spectroscopic properties and selectivity of...

119 citations


Authors

Showing all 11499 results

NameH-indexPapersCitations
Lei Zhang135224099365
Chao Zhang127311984711
Tao Zhang123277283866
Bo Wang119290584863
Marinus H. van IJzendoorn11357756627
Jing Li9881143430
Lei Liu98204151163
Peng Zhang88157833705
Di Wu8796548697
Xi-Cheng Zhang7950225442
Wei Li78159231728
Gonzalo Giribet7539821000
Xiaoli Li6987720690
Mark T. Swihart6833016819
Kelin Wang6832816549
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

Nanjing University
105.5K papers, 2.2M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

91% related

Wuhan University
92.8K papers, 1.6M citations

91% related

Zhejiang University
183.2K papers, 3.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022107
2021997
2020967
2019977
2018941