scispace - formally typeset
Search or ask a question
Institution

Chandigarh University

EducationMohali, India
About: Chandigarh University is a education organization based out in Mohali, India. It is known for research contribution in the topics: Computer science & Chemistry. The organization has 1358 authors who have published 2104 publications receiving 10050 citations.


Papers
More filters
Book ChapterDOI
01 Jan 2021
TL;DR: A detailed review of chaotic Scheme-based image encryption techniques is presented and contributes to approaches that can simultaneously provide protection functionality and an overall visual check that might be acceptable for such applications.
Abstract: In the face of an adversary, cryptography is a matter of coordination. It addresses a variety of topics such as confidentiality, authentication, and several vital distributions. Modern cryptography offers the framework for knowing precisely what these concerns are, how to test protocols intended to address them, and how to create protocols that you can trust in their protection. Advanced computer technology can access multimedia easily. Multimedia technologies have recently become popular in operation, and multimedia data protection has become the key concern. In this correspondence, the fundamental problems related to the problem of cryptography were addressed, and surveys of imaging strategies focused on disorderly schemes were also discussed. The chaotic cryptography of images can be accomplished with chaos properties, including deterministic dynamics, unpredictable action, and nonlinear transformation. This definition contributes to approaches that can simultaneously provide protection functionality and an overall visual check that might be acceptable for such applications. In different implementations, including military, legal, and medical processes, digital photographs are commonly used. These applications must monitor the access to images and include ways of checking the accuracy of images. In this paper, a detailed review of chaotic Scheme-based image encryption techniques is presented.

19 citations

Journal ArticleDOI
TL;DR: In this paper , 17 different actinomycetal strains isolated from hydrocarbon-contaminated soils collected from an oil distribution company in Algeria were evaluated for their ability to produce NPs.
Abstract: Silver nanoparticles (AgNPs) are a promising technology for the design of antimicrobial agents against drug-resistant pathogens. It could also be used for the photocatalytic degradation of dyes used in industries such as methylene blue (MB). In this study, 17 different actinomycetal strains isolated from hydrocarbon-contaminated soils collected from an oil distribution company in Algeria were evaluated for their ability to produce NPs. After a selection process, S16 was the main strain capable of synthesizing AgNPs extracellularly. The strain S16 was determined using molecular identification based on the sequencing of the 16S rDNA gene. Among various techniques used for the synthesis of AgNPS, a technique using a temperature of 30 °C, pH of 7, a metal salt concentration of 1 mM, and a period of 72 h in the dark were found to be more effective in the biosynthesis of the AgNPs. The biosynthesized AgNPs that were analyzed by UV-visible spectroscopy resulted in a specific peak at a wavelength of (λ = 400 nm). The DRX analyses showed characteristic peaks of the AgNPs at (1 1 1), (2 0 0), (2 2 2), and (3 1 1), which validated the presence and crystalline nature of the biosynthesized NPs. Zetasizer analysis showed an average size and zeta potential of 64 nm (-32.3 mV), while the SEM-EDS analysis confirmed the spherical shape of AgNPs and the presence of Ag atoms in the elemental composition. The biosynthesized AgNPs indicated adequate antibacterial activity against 5 out of the 6 strains tested in this study, using minimum inhibitory concentration (MIC) that ranged from 217.18 μg/mL to 1137.5 μg/mL. The AgNPs were combined with commercial antibiotics and the synergistic effect of the combination was also assessed against MRSA which resulted in increased antibacterial activity of AgNPs in the presence of the strain S16. Furthermore, the photocatalytic degradation of the methylene blue (MB) was evaluated under sunlight and UV irradiations using biosynthesized AgNPs. The AgNPs showed photocatalytic decolorization potential of 71.3% for MB dye (20 ppm) under sunlight irradiation within 6 h of incubation, while only 11.25% of the MB dye degraded using UV irradiation.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the mechanical, thermal, morphological and 4D (shape memory, magnetic and piezoelectric) properties of the feedstock filaments prepared for fused filament fabrication (FFF) process by twin-screw compounding of polyvinylidene difluoride reinforced with Mn doped ZnO.

19 citations

Journal ArticleDOI
20 Mar 2020
TL;DR: In the absorption spectral titration of DTPH, a new peak at higher wavelength was emerged in titrimetric analytical studies of CN– with the zero-order reaction kinetics affirming the substantial sensor–analyte interaction.
Abstract: An inimitable urea-based multichannel chemosensor, DTPH [1,5-bis-(2,6-dichloro-4-(trifluoromethyl)phenyl)carbonohydrazide], was examined to be highly proficient to recognize CN- based on the H-bonding interaction between sensor -NH moiety and CN- in aqueous medium with explicit selectivity. In the absorption spectral titration of DTPH, a new peak at higher wavelength was emerged in titrimetric analytical studies of CN- with the zero-order reaction kinetics affirming the substantial sensor-analyte interaction. The isothermal titration calorimetry (ITC) experiment further affirmed that the sensing process was highly spontaneous with the Gibbs free energy of -26 × 104 cal/mol. The binding approach between DTPH and CN- was also validated by more than a few experimental studies by means of several spectroscopic tools along with the theoretical calculations. A very low detection limit of the chemosensor toward CN- (0.15 ppm) further instigated to design an RGB-based sensory device based on the colorimetric upshots of the chemosensor in order to develop a distinct perception regarding the presence of innocuous or precarious level of the CN- in a contaminated solution. Moreover, the reversibility of the sensor in the presence of CN- and Hg2+ originated a logic gate mimic ensemble. Additionally, the real-field along with the in vitro CN- detection efficiency of the photostable DTPH was also accomplished by using various biological specimens.

19 citations


Authors

Showing all 1533 results

NameH-indexPapersCitations
Neeraj Kumar7658718575
Rupinder Singh424587452
Vijay Kumar331473811
Radha V. Jayaram321143100
Suneel Kumar321805358
Amanpreet Kaur323675713
Vikas Sharma311453720
Munish Kumar Gupta311923462
Vijay Kumar301132870
Shashi Kant291602990
Sunpreet Singh291532894
Gagangeet Singh Aujla281092437
Deepak Kumar282732957
Dilbag Singh27771723
Tejinder Singh271622931
Network Information
Related Institutions (5)
VIT University
24.4K papers, 261.8K citations

87% related

Thapar University
8.5K papers, 130.3K citations

85% related

Amity University
12.7K papers, 86K citations

85% related

SRM University
11.7K papers, 103.7K citations

85% related

National Institute of Technology, Rourkela
10.7K papers, 150.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022182
2021893
2020374
2019233
2018174