scispace - formally typeset
Search or ask a question
Institution

China University of Petroleum

EducationBeijing, China
About: China University of Petroleum is a education organization based out in Beijing, China. It is known for research contribution in the topics: Catalysis & Oil shale. The organization has 39802 authors who have published 39151 publications receiving 483760 citations. The organization is also known as: Zhōngguó Shíyóu Dàxué & China University of Petroleum (Beijing).


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of liquid nitrogen super-cooling on coal damage and fracture failure was investigated, and the results showed that coal cracks along macro-fractures on the surface of samples were increased by 48.89% and 93.55% respectively.

129 citations

Journal ArticleDOI
TL;DR: In this article, the authors used NaOH and Ca(OH)2 as alkaline catalysts for lactic acid synthesis from glucose, cellulose, and starch in the presence of reverse aldol condensation and double bond rule of hexose.
Abstract: We investigated the hydrothermal conversion of the carbohydrates including glucose, cellulose, and starch to lactic acid using NaOH and Ca(OH)2 as alkaline catalysts. Both catalysts significantly promoted the lactic acid formation. The highest yield of lactic acid from glucose was 27% with 2.5 M NaOH and 20% with 0.32 M Ca(OH)2 at 300°C for 60 s. The lactic acid yields from cellulose and starch were comparable with the yield from glucose with 0.32 M Ca(OH)2 at 300°C, but the reaction time in the case of cellulose was 90 s. The mechanism of lactic acid formation from glucose was discussed by identifying the intermediate products. Lactic acid may be formed via the formation of aldoses of two to four carbons including aldose of three carbons, which are all formed by reverse aldol condensation and double bond rule of hexose. This implies that carbon–carbon cleavage occurs at not only C3C4 but also at C2C3. © 2010 American Institute of Chemical Engineers AIChE J, 2010

129 citations

Journal ArticleDOI
22 Oct 2013-Langmuir
TL;DR: The distinct roles of the noncovalent interactions and their impact on nanostructural templating using carefully designed hexapeptides, I2K2I2, I4K2, and KI4K are demonstrated.
Abstract: Peptide self-assembly is of direct relevance to protein science and bionanotechnology, but the underlying mechanism is still poorly understood. Here, we demonstrate the distinct roles of the noncovalent interactions and their impact on nanostructural templating using carefully designed hexapeptides, I2K2I2, I4K2, and KI4K. These simple variations in sequence led to drastic changes in final self-assembled structures, beta-sheet hydrogen bonding was found to favor the formation of one-dimensional nanostructures, such as nano-fibrils from I4K2 and nanotubes from KI4K, but the lack of evident beta-sheet hydrogen bonding in the case of I2(K2)I(2) led to no nanostructure formed. The lateral stacking and twisting of the beta-sheets were well-linked to the hydrophobic and electrostatic interactions between amino acid side chains and their interplay. For I4K2, the electrostatic repulsion acted to reduce the hydrophobic attraction between beta-sheets, leading to their limited lateral stacking and more twisting, and final fibrillar structures; in contrast, the repulsive force had little influence in the case of KI4K, resulting in wide ribbons that eventually developed into nanotubes. The fibrillar and tubular features were demonstrated by a combination of cryogenic transmission electron microscopy (cryo-TEM), negative-stain transmission electron microscopy (TEM), and small-angle neutron scattering (SANS). SANS also provided structural information at shorter scale lengths. All atom molecular dynamics (MD) simulations were used to suggest possible molecular arrangements within the beta-sheets at the very early stage of self-assembly.

129 citations

Journal ArticleDOI
TL;DR: A hybrid physics-model-based and data-driven remaining useful life (RUL) estimation methodology of structure systems considering the influence of multiple causes by using dynamic Bayesian networks (DBNs).
Abstract: In dynamic complex environments, the degradation of structure systems is generally caused not by a single factor but by multiple ones, and the process is subject to a high level of uncertainty. This article contributes a hybrid physics-model-based and data-driven remaining useful life (RUL) estimation methodology of structure systems considering the influence of multiple causes by using dynamic Bayesian networks (DBNs). The structure model and parameter model of DBNs for the degradation process caused by a single factor are established on the basis of theoretical or empirical physical models, thereby solving the problem of insufficient data. An RUL estimation model is subsequently established by integrating these degradation process models. The RUL value is obtained from the time difference between the detection point and predicted failure point, which is determined using the failure threshold of performance. The sensor data and expert knowledge can be input into the estimation model to update the RUL value whenever necessary. The subsea pipelines in offshore oil and gas subsea production systems are adopted to demonstrate the proposed methodology. The degradation processes with fatigue, corrosion, sand erosion, and internal waves are modeled using DBNs, and the RUL is estimated using a DBN-based RUL methodology.

129 citations

Journal ArticleDOI
TL;DR: The traditional and novel etching methods are summarized and compared, especially fluorine-free method, and strategies for improving capacitance from structure modulation to composite structure construction are summed up and compared.
Abstract: Ti3C2Tx, a novel two-dimensional layer material, is widely used as electrode materials of supercapacitor due to its good metal conductivity, redox reaction active surface, and so on. However, there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance, such as restacking, re-crushing, and oxidation of titanium. Recently, many advances have been proposed to enhance capacitance performance of Ti3C2Tx. In this review, recent strategies for improving specific capacitance are summarized and compared, for example, film formation, surface modification, and composite method. Furthermore, in order to comprehend the mechanism of those efforts, this review analyzes the energy storage performance in different electrolytes and influencing factors. This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.

128 citations


Authors

Showing all 40138 results

NameH-indexPapersCitations
Lei Jiang1702244135205
Shi-Zhang Qiao14252380888
Jian Zhou128300791402
Tao Zhang123277283866
Jian Liu117209073156
Qiang Yang112111771540
Jianjun Liu112104071032
Ju Li10962346004
Peng Wang108167254529
Alan R. Fersht10840033895
Jian Zhang107306469715
Wei Liu102292765228
Xiaoming Sun9638247153
Haibo Zeng9460439226
Chao Wang9156132854
Network Information
Related Institutions (5)
East China University of Science and Technology
36.4K papers, 763.1K citations

89% related

Dalian University of Technology
71.9K papers, 1.1M citations

88% related

Tianjin University
79.9K papers, 1.2M citations

87% related

South China University of Technology
69.4K papers, 1.2M citations

86% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
20221,053
20214,986
20204,421
20194,425
20183,709