scispace - formally typeset
Search or ask a question
Institution

China University of Petroleum

EducationBeijing, China
About: China University of Petroleum is a education organization based out in Beijing, China. It is known for research contribution in the topics: Catalysis & Oil shale. The organization has 39802 authors who have published 39151 publications receiving 483760 citations. The organization is also known as: Zhōngguó Shíyóu Dàxué & China University of Petroleum (Beijing).


Papers
More filters
Journal ArticleDOI
TL;DR: This work optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite and proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure measurement for nanoporous material such as shale.
Abstract: We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%--samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems.

102 citations

Journal ArticleDOI
15 May 2019-Fuel
TL;DR: In this article, the authors explored the mechanisms of imbibition enhanced oil recovery (IEOR) using three of the most commonly used chemical systems (surfactant, brine based nano-silica, and surfactant based nano silica solutions).

102 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of observer design for switched linear systems with time-varying delay and exogenous disturbances is addressed, and sufficient conditions which ensure the observer-based finite-time bounded and H ∞ finite time stability are given, respectively.

102 citations

Journal ArticleDOI
TL;DR: In this paper, a highly hydrophobic porous metal-organic framework, named UPC-21, constructed from a pentiptycene-based organic ligand, for efficient oil/water separation is presented.
Abstract: Oil spills have led to more and more energy waste and economic losses all over the world. Developing highly hydrophobic materials for efficient oil/water separation has become key in solving this global issue. Here we report a highly hydrophobic porous metal–organic framework, named UPC-21, constructed from a pentiptycene-based organic ligand, for efficient oil/water separation. Large and pure crystals of UPC-21 could be obtained with high yield through a developed “diauxic growth” strategy. Due to the existence of multi-aromatic hydrocarbon units in the central pentiptycene core of the ligand, UPC-21 exhibits high hydrophobicity with a water contact angle of 145 ± 1° and superoleophilicity with an oil contact angle of 0°. Strikingly, oil/water separation measurements reveal that UPC-21 can efficiently separate toluene/water, hexane/water, gasoline/water, naphtha/water, and crude oil/water with a separation efficiency being above 99.0% except for crude oil/water due to its high viscosity and complex composition. Our work presented here may open a new avenue for the application of porous MOF materials.

102 citations

Journal ArticleDOI
TL;DR: It was found that the convective heat transfer control model reported in the literature could be used to formulate the lateral film growth rate v(f) with the driving force DeltaT perfectly for all systems after introduction of the assumption that the thickness of hydrate films is inversely proportional to the drivingForce.
Abstract: The lateral film growth rate of CH4, C2H4, CO2, CH4 + C2H4, and CH4 + C3H8 hydrates in pure water were measured at four fixed temperatures of 273.4, 275.4, 277.4, and 279.4 K by means of suspending a single gas bubble in water. The results showed that the lateral growth rates of mixed-gas CH4 + C2H4 hydrate films were slower than that of pure gas (CH4 or C2H4) for the same driving force and that of mixed-gas CH4 + C3H8 hydrate film growth was the slowest. The dependence of the thickness of hydrate film on the driving force was investigated, and it was demonstrated that the thickness of hydrate film was inversely proportional to the driving force. It was found that the convective heat transfer control model reported in the literature could be used to formulate the lateral film growth rate v(f) with the driving force DeltaT perfectly for all systems after introduction of the assumption that the thickness of hydrate films is inversely proportional to the driving force DeltaT; i.e., v(f) = psiDeltaT(5/2) is correct and independent of the composition of gas and the type of hydrate. The thicknesses of different gas hydrate films were estimated, and it is demonstrated that the thicknesses of mixed-gas hydrate films were thicker than those of pure gases, which was qualitatively consistent with the experimental result.

102 citations


Authors

Showing all 40138 results

NameH-indexPapersCitations
Lei Jiang1702244135205
Shi-Zhang Qiao14252380888
Jian Zhou128300791402
Tao Zhang123277283866
Jian Liu117209073156
Qiang Yang112111771540
Jianjun Liu112104071032
Ju Li10962346004
Peng Wang108167254529
Alan R. Fersht10840033895
Jian Zhang107306469715
Wei Liu102292765228
Xiaoming Sun9638247153
Haibo Zeng9460439226
Chao Wang9156132854
Network Information
Related Institutions (5)
East China University of Science and Technology
36.4K papers, 763.1K citations

89% related

Dalian University of Technology
71.9K papers, 1.1M citations

88% related

Tianjin University
79.9K papers, 1.2M citations

87% related

South China University of Technology
69.4K papers, 1.2M citations

86% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
20221,053
20214,986
20204,421
20194,425
20183,709