scispace - formally typeset
Search or ask a question
Institution

China University of Petroleum

EducationBeijing, China
About: China University of Petroleum is a education organization based out in Beijing, China. It is known for research contribution in the topics: Catalysis & Oil shale. The organization has 39802 authors who have published 39151 publications receiving 483760 citations. The organization is also known as: Zhōngguó Shíyóu Dàxué & China University of Petroleum (Beijing).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the competitive adsorption behavior of single and binary mixtures of methane and ethane in montmorillonite slits having apertures ranging from 1.1 to 3.0

133 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined two sets of sandstone reservoirs to determine whether the sandstone diagenetic systems were open or closed to the mass transfer of products from feldspar dissolution and its impact on reservoir quality.
Abstract: Feldspar dissolution and precipitation of clays and quartz cements are important diagenetic reactions affecting reservoir quality evolution in sandstones with detrital feldspars. We examined two sets of sandstone reservoirs to determine whether the sandstone diagenetic systems were open or closed to the mass transfer of products from feldspar dissolution and its impact on reservoir quality. One of the reservoirs is the Eocene fan delta sandstone buried 2.5–4.0 km (1.5–2.5 mi) below sea level (BSL) in the Gaoliu (GL) area of the Nanpu sag, and the other is the Eocene subaqueous fan sandstone buried 1.5–4.5 km (1–2.8 mi) BSL in the Shengtuo (ST) area of the Dongying sag. Both sandstones consist mainly of lithic arkoses and feldspathic litharenites, and have secondary porosity formed by dissolution of feldspars. In the GL sandstones, the absolute amounts of authigenic clays and quartz cements (generally 125°C [257°F]). The low abundance of authigenic clays and quartz cements, and low pore-water salinity indicate that much of the , , and released from leached K-feldspars were exported from the GL sandstone system. And the extensive feldspar dissolution enhanced much porosity and permeability. In contrast, the ST sandstones with secondary pores formed by feldspar dissolution generally contain authigenic clays (kaolinite and illite) and quartz cements with almost identical volume of secondary pores. Kaolinite dominates in the ST sandstones at shallower depth (3.1 km [2 mi] BSL) where temperature exceeds 125°C (257°F). The presence of abundant clays and quartz cements indicates that and released from leached feldspars were retained in the ST sandstone system. The dominance of authigenic illite at greater depth indicates that sufficient should have been retained within the sandstones for occurrence of illitization of kaolinite and feldspars. Secondary porosity in thin sections can be up to 3%, but little porosity ( The diagenetic difference between the GL and the ST sandstones can be interpreted by assessing pore-water evolution in these two areas. The current pore waters with low salinity and negative hydrogen isotopic compositions in the GL sandstone system indicate the significant impact of meteoric water, whereas the current pore waters with high salinity and the paleofluids with positive oxygen isotopic compositions in the ST sandstone system indicate little trace of meteoric water. Access of meteoric freshwater to the GL area probably occurred during the late Oligocene to Neogene through widely developed faults in the Paleogene and Neogene strata. The low-salinity water could have been responsible for flushing of solutes derived from feldspar dissolution. As such, diagenesis in the GL sandstones is considered to have occurred in an open geochemical system, whereas with limited faults and high water salinity, the ST sandstones acted as a closed geochemical system where precipitation of kaolinite, illite, and quartz cements occurred following dissolution of feldspars.

132 citations

Journal ArticleDOI
TL;DR: Under optimal conditions, Zn-CDs demonstrated high sensitivity and response to hydrogen peroxide and glucose over a wide range of concentrations, with a linear range of 10-80 μM and 5-100 μM, respectively, indicating their great potential as a fluorescent probe for chemical sensing.
Abstract: Heteroatom doped carbon dots (CDs), with high photoluminescence quantum yield (PLQY), are of keen interest in various applications such as chemical sensors, bio-imaging, electronics, and photovoltaics. Zinc, an important element assisting the electron-transfer process and an essential trace element for cells, is a promising metal dopant for CDs, which could potentially lead to multifunctional CDs. In this contribution, we report a single-step, high efficiency, hydrothermal method to synthesize Zn-doped carbon dots (Zn-CDs) with a superior PLQY. The PLQY and luminescence characteristic of Zn-CDs can be tuned by controlling the precursor ratio, and the surface oxidation in the CDs. Though a few studies have reported metal doped CDs with good PLQY, the as prepared Zn-Cds in the present method exhibited a PLQY up to 32.3%. To the best of our knowledge, there is no report regarding the facile preparation of single metal-doped CDs with a QY more than 30%. Another unique attribute of the Zn-CDs is the high monodispersity and the resultant highly robust excitation-independent luminescence that is stable over a broad range of pH values. Spectroscopic investigations indicated that the superior PLQY and luminescence of Zn-CDs are due to the heteroatom directed, oxidized carbon-based surface passivation. Furthermore, we developed a novel and sensitive biosensor for the detection of hydrogen peroxide and glucose leveraging the robust fluorescence properties of Zn-CDs. Under optimal conditions, Zn-CDs demonstrated high sensitivity and response to hydrogen peroxide and glucose over a wide range of concentrations, with a linear range of 10–80 μM and 5–100 μM, respectively, indicating their great potential as a fluorescent probe for chemical sensing.

132 citations

Journal ArticleDOI
TL;DR: In this article, three amino-functionalized InIII/AlIII/ZrIV-based MOFs with high physicochemical stability for multifunctional performances were presented, and the pore size of these MOFs varies from a few angstroms to the nanometre scale.
Abstract: A major goal of metal–organic framework (MOF) research is to adjust the structure and function for specific applications. It is highly desirable to develop new multifunctional MOF materials for selective guest molecule storage/separation and catalysis. Recent advances in the synthesis of MOFs have created new opportunities in this direction. Although many multifunctional MOFs have been synthesized to explore different applications, it is still a challenge to construct MOFs with high physicochemical stability for specific applications. In addition, most of the MOFs only have a microporous structure, which is not conducive to the transportation of substances and the entry of macromolecules, thus limiting the applications of these materials in macromolecular adsorption. Herein, we present three amino-functionalized InIII/AlIII/ZrIV-based MOFs with high physicochemical stability for multifunctional performances. The pore size of these MOFs varies from a few angstroms to the nanometre scale, and their specific surface areas and pore volumes gradually increase with the change of nodes. Further studies reveal that these MOFs are promising candidates as storage mediums for hydrogen (H2) and as separation agents for the selective removal of (C3Hn–C2Hn) from natural gas (NG). The mesoporous Zr-MOF can effectively enrich dye molecules to purify water, and the adsorption dynamics of a series of organic dyes shows that there are no size and charge-selective effects for the adsorption process. Furthermore, the catalytic efficiency and mechanism of Knoevenagel condensation reactions have also been studied in detail. Overall, the three versatile amino-functionalized MOFs highlight the advantages of metal–organic frameworks for designing host materials tailored for applications in hydrogen (H2) storage, light hydrocarbon adsorption/separation, water purification, and catalysis.

132 citations

Journal ArticleDOI
TL;DR: In this paper, the pore structure characteristics of isolated organic matter and its corresponding bulk shales were investigated for five high matured marine shale samples from the Lower Silurian Longmaxi formation in south China using X-ray diffraction (XRD), total organic carbon content (TOC) tests, field emission scanning electron microscope (FE-SEM) observation and ultra-low pressure nitrogen gas physisorption.

132 citations


Authors

Showing all 40138 results

NameH-indexPapersCitations
Lei Jiang1702244135205
Shi-Zhang Qiao14252380888
Jian Zhou128300791402
Tao Zhang123277283866
Jian Liu117209073156
Qiang Yang112111771540
Jianjun Liu112104071032
Ju Li10962346004
Peng Wang108167254529
Alan R. Fersht10840033895
Jian Zhang107306469715
Wei Liu102292765228
Xiaoming Sun9638247153
Haibo Zeng9460439226
Chao Wang9156132854
Network Information
Related Institutions (5)
East China University of Science and Technology
36.4K papers, 763.1K citations

89% related

Dalian University of Technology
71.9K papers, 1.1M citations

88% related

Tianjin University
79.9K papers, 1.2M citations

87% related

South China University of Technology
69.4K papers, 1.2M citations

86% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
20221,053
20214,986
20204,421
20194,425
20183,709