scispace - formally typeset
Search or ask a question
Institution

China University of Petroleum

EducationBeijing, China
About: China University of Petroleum is a education organization based out in Beijing, China. It is known for research contribution in the topics: Catalysis & Oil shale. The organization has 39802 authors who have published 39151 publications receiving 483760 citations. The organization is also known as: Zhōngguó Shíyóu Dàxué & China University of Petroleum (Beijing).


Papers
More filters
Journal ArticleDOI
TL;DR: The stability analysis problem for a class of switched positive linear systems (SPLSs) with average dwell time switching is investigated and a multiple linear copositive Lyapunov function is introduced, by which the sufficient stability criteria are given for the underlying systems in both continuous-time and discrete-time contexts.

597 citations

Journal ArticleDOI
TL;DR: The results in this study support the fact that strict quarantine measures can not only protect the public from COVID-19, but also exert a positive impact on the environment.

587 citations

Journal ArticleDOI
TL;DR: The high specific surface area, facile ion transport and charge transfer, abundant electrochemical active sites, suitable H(+) adsorption, and H2 formation kinetics and energetics are proposed to contribute to the high activity of the INS ultrathin nanosheets toward HER.
Abstract: We report on the synthesis of iron-nickel sulfide (INS) ultrathin nanosheets by topotactic conversion from a hydroxide precursor The INS nanosheets exhibit excellent activity and stability in strong acidic solutions as a hydrogen evolution reaction (HER) catalyst, lending an attractive alternative to the Pt catalyst The metallic α-INS nanosheets show an even lower overpotential of 105 mV at 10 mA/cm2 and a smaller Tafel slope of 40 mV/dec With the help of DFT calculations, the high specific surface area, facile ion transport and charge transfer, abundant electrochemical active sites, suitable H+ adsorption, and H2 formation kinetics and energetics are proposed to contribute to the high activity of the INS ultrathin nanosheets toward HER

580 citations

Journal ArticleDOI
TL;DR: In this paper, a novel polymeric g-C3N4 photocatalysts loaded with noble metal Ag nanoparticles were prepared via a facile heating method, and they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), TEM, HRTEM, X-Ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectra (DRS), and photoluminescence spectra.
Abstract: Novel polymeric g-C3N4 photocatalysts loaded with noble metal Ag nanoparticles were prepared via a facile heating method. The obtained Ag/g-C3N4 composite products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflection spectra (DRS) and photoluminescence spectra (PL). The photocatalytic activities of Ag/g-C3N4 samples were investigated based on the decomposition of methyl orange and hydrogen evolution under visible light irradiation. The XPS results revealed that it was the metallic Ag0 deposited on polymeric g-C3N4 samples. The Ag/g-C3N4 photocatalysts exhibited significantly enhanced photocatalytic performance for the degradation of methyl orange and hydrogen production compared with pure g-C3N4. The optimal Ag content was determined to be 1.0 wt%, and the corresponding hydrogen evolution rate was 10.105 μmol h−1, which exceeded that of pure g-C3N4 by more than 11.7 times. The enhanced photocatalytic performance could be attributed to the synergic effect between Ag and g-C3N4, which promoted the migration efficiency of photo-generated carriers. The proposed mechanism for the enhanced visible light photocatalytic activity of g-C3N4 modified by a small amount of Ag was further confirmed by photoluminescence spectroscopy.

579 citations

Journal ArticleDOI
TL;DR: This critical review highlights recent advances in studying peptide amphiphiles, focusing on the formation of different nanostructures and their applications in diverse fields.
Abstract: Short synthetic peptide amphiphiles have recently been explored as effective nanobiomaterials in applications ranging from controlled gene and drug release, skin care, nanofabrication, biomineralization, membrane protein stabilization to 3D cell culture and tissue engineering. This range of applications is heavily linked to their unique nanostructures, remarkable simplicity and biocompatibility. Some peptide amphiphiles also possess antimicrobial activities whilst remaining benign to mammalian cells. These attractive features are inherently related to their selective affinity to different membrane interfaces, high capacity for interfacial adsorption, nanostructuring and spontaneous formation of nano-assemblies. Apart from sizes, the primary sequences of short peptides are very diverse as they can be either biomimetic or de novo designed. Thus, their self-assembling mechanistic processes and the nanostructures also vary enormously. This critical review highlights recent advances in studying peptide amphiphiles, focusing on the formation of different nanostructures and their applications in diverse fields. Many interesting features learned from peptide self-organisation and hierarchical templating will serve as useful guidance for functional materials design and nanobiotechnology (123 references).

573 citations


Authors

Showing all 40138 results

NameH-indexPapersCitations
Lei Jiang1702244135205
Shi-Zhang Qiao14252380888
Jian Zhou128300791402
Tao Zhang123277283866
Jian Liu117209073156
Qiang Yang112111771540
Jianjun Liu112104071032
Ju Li10962346004
Peng Wang108167254529
Alan R. Fersht10840033895
Jian Zhang107306469715
Wei Liu102292765228
Xiaoming Sun9638247153
Haibo Zeng9460439226
Chao Wang9156132854
Network Information
Related Institutions (5)
East China University of Science and Technology
36.4K papers, 763.1K citations

89% related

Dalian University of Technology
71.9K papers, 1.1M citations

88% related

Tianjin University
79.9K papers, 1.2M citations

87% related

South China University of Technology
69.4K papers, 1.2M citations

86% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
20221,053
20214,986
20204,421
20194,425
20183,709