scispace - formally typeset
Search or ask a question
Institution

Chinese Academy of Sciences

GovernmentBeijing, Beijing, China
About: Chinese Academy of Sciences is a government organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 421602 authors who have published 634849 publications receiving 14894293 citations. The organization is also known as: CAS.
Topics: Catalysis, Population, Laser, Adsorption, Graphene


Papers
More filters
Journal ArticleDOI
17 Jun 2016-Science
TL;DR: Overall, ecosystem services improved from 2000 to 2010, apart from habitat provision, and China’s national conservation policies contributed significantly to the increases in those ecosystem services.
Abstract: In response to ecosystem degradation from rapid economic development, China began investing heavily in protecting and restoring natural capital starting in 2000. We report on China's first national ecosystem assessment (2000-2010), designed to quantify and help manage change in ecosystem services, including food production, carbon sequestration, soil retention, sandstorm prevention, water retention, flood mitigation, and provision of habitat for biodiversity. Overall, ecosystem services improved from 2000 to 2010, apart from habitat provision. China's national conservation policies contributed significantly to the increases in those ecosystem services.

959 citations

Journal ArticleDOI
03 Dec 2004-Science
TL;DR: It is suggested that expression of iGb3 in peripheral tissues may be involved in controlling NKT cell responses to infections and malignancy and in autoimmunity.
Abstract: NKT cells represent a distinct lineage of T cells that coexpress a conserved αβ T cell receptor (TCR) and natural killer (NK) receptors. Although the TCR of NKT cells is characteristically autoreactive to CD1d, a lipid-presenting molecule, endogenous ligands for these cells have not been identified. We show that a lysosomal glycosphingolipid of previously unknown function, isoglobotrihexosylceramide (iGb3), is recognized both by mouse and human NKT cells. Impaired generation of lysosomal iGb3 in mice lacking β-hexosaminidase b results in severe NKT cell deficiency, suggesting that this lipid also mediates development of NKT cells in the mouse. We suggest that expression of iGb3 in peripheral tissues may be involved in controlling NKT cell responses to infections and malignancy and in autoimmunity.

957 citations

Journal ArticleDOI
TL;DR: Using resting state functional magnetic resonance imaging data from 1003 healthy adults, a broad array of network centrality measures are investigated to provide novel insights into connectivity within the whole-brain functional network (i.e., the functional connectome).
Abstract: The network architecture of functional connectivity within the human brain connectome is poorly understood at the voxel level Here, using resting state functional magnetic resonance imaging data from 1003 healthy adults, we investigate a broad array of network centrality measures to provide novel insights into connectivity within the whole-brain functional network (ie, the functional connectome) We first assemble and visualize the voxel-wise (4 mm) functional connectome as a functional network We then demonstrate that each centrality measure captures different aspects of connectivity, highlighting the importance of considering both global and local connectivity properties of the functional connectome Beyond "detecting functional hubs," we treat centrality as measures of functional connectivity within the brain connectome and demonstrate their reliability and phenotypic correlates (ie, age and sex) Specifically, our analyses reveal age-related decreases in degree centrality, but not eigenvector centrality, within precuneus and posterior cingulate regions This implies that while local or (direct) connectivity decreases with age, connections with hub-like regions within the brain remain stable with age at a global level In sum, these findings demonstrate the nonredundancy of various centrality measures and raise questions regarding their underlying physiological mechanisms that may be relevant to the study of neurodegenerative and psychiatric disorders

957 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the contributions of crystal structure (phase), edges, and sulfur vacancies (S-vacancies) to the catalytic activity of 1T phase MoS2 nanosheets.
Abstract: Molybdenum disulfide (MoS2) is a promising nonprecious catalyst for the hydrogen evolution reaction (HER) that has been extensively studied due to its excellent performance, but the lack of understanding of the factors that impact its catalytic activity hinders further design and enhancement of MoS2-based electrocatalysts. Here, by using novel porous (holey) metallic 1T phase MoS2 nanosheets synthesized by a liquid-ammonia-assisted lithiation route, we systematically investigated the contributions of crystal structure (phase), edges, and sulfur vacancies (S-vacancies) to the catalytic activity toward HER from five representative MoS2 nanosheet samples, including 2H and 1T phase, porous 2H and 1T phase, and sulfur-compensated porous 2H phase. Superior HER catalytic activity was achieved in the porous 1T phase MoS2 nanosheets that have even more edges and S-vacancies than conventional 1T phase MoS2. A comparative study revealed that the phase serves as the key role in determining the HER performance, as 1T ...

957 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the recent technological and theoretical advances related to the CeO2-based nanomaterials, with a focus on the synthesis from one dimensional to mesoporous ceria as well as the properties from defect chemistry to nano-size effects.
Abstract: The controllable synthesis of nanostructured CeO2-based materials is an imperative issue for environment- and energy-related applications. In this review, we present the recent technological and theoretical advances related to the CeO2-based nanomaterials, with a focus on the synthesis from one dimensional to mesoporous ceria as well as the properties from defect chemistry to nano-size effects. Seven extensively studied aspects regarding the applications of nanostructured ceria-based materials are selectively surveyed as well. New experimental approaches have been demonstrated with an atomic scale resolution characterization. Density functional theory (DFT) calculations can provide insight into the rational design of highly reactive catalysts and understanding of the interactions between the noble metal and ceria support. Achieving desired morphologies with designed crystal facets and oxygen vacancy clusters in ceria via controlled synthesis process is quite important for highly active catalysts. Finally, remarks on the challenges and perspectives on this exciting field are proposed.

956 citations


Authors

Showing all 422053 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Zhong Lin Wang2452529259003
Yi Chen2174342293080
Jing Wang1844046202769
Peidong Yang183562144351
Xiaohui Fan183878168522
H. S. Chen1792401178529
Douglas Scott1781111185229
Jie Zhang1784857221720
Pulickel M. Ajayan1761223136241
Feng Zhang1721278181865
Andrea Bocci1722402176461
Yang Yang1712644153049
Lei Jiang1702244135205
Yang Gao1682047146301
Network Information
Related Institutions (5)
Tsinghua University
200.5K papers, 4.5M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Peking University
181K papers, 4.1M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023170
20222,918
202159,109
202055,057
201952,186
201846,329