scispace - formally typeset
Search or ask a question
Institution

Chinese Academy of Sciences

GovernmentBeijing, Beijing, China
About: Chinese Academy of Sciences is a government organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 421602 authors who have published 634849 publications receiving 14894293 citations. The organization is also known as: CAS.
Topics: Catalysis, Population, Laser, Adsorption, Graphene


Papers
More filters
Journal ArticleDOI
Chun Tang1, Ningyan Cheng1, Zonghua Pu1, Wei Xing1, Xuping Sun1 
TL;DR: The growth of NiSe nanowire film on nickel foam (NiSe/NF) in situ by hydrothermal treatment of NF using NaHSe as Se source is presented.
Abstract: Active and stable electrocatalysts made from earth-abundant elements are key to water splitting for hydrogen production through electrolysis. The growth of NiSe nanowire film on nickel foam (NiSe/NF) insitu by hydrothermal treatment of NF using NaHSe as Se source is presented. When used as a 3D oxygen evolution electrode, the NiSe/NF exhibits high activity with an overpotential of 270mV required to achieve 20mAcm(-2) and strong durability in 1.0M KOH, and the NiOOH species formed at the NiSe surface serves as the actual catalytic site. The system is also highly efficient for catalyzing the hydrogen evolution reaction in basic media. This bifunctional electrode enables a high-performance alkaline water electrolyzer with 10mAcm(-2) at a cell voltage of 1.63V.

1,376 citations

Journal ArticleDOI
TL;DR: In this paper, the phonon spectra of graphene were calculated as a function of uniaxial tension by density functional perturbation theory to assess the first occurrence of phonon instability on the strain path.
Abstract: Graphene-based $s{p}^{2}$-carbon nanostructures such as carbon nanotubes and nanofibers can fail near their ideal strengths due to their exceedingly small dimensions. We have calculated the phonon spectra of graphene as a function of uniaxial tension by density functional perturbation theory to assess the first occurrence of phonon instability on the strain path, which controls the strength of a defect-free crystal at $0\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. Uniaxial tensile strain is applied in the $x$ (nearest-neighbor) and $y$ (second nearest-neighbor) directions, related to tensile deformation of zigzag and armchair nanotubes, respectively. The Young's modulus $E=1050\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ and Poisson's ratio $\ensuremath{ u}=0.186$ from our small-strain results are in good agreement with previous calculations. We find that in both $x$ and $y$ uniaxial tensions, phonon instabilities occur near the center of the Brillouin zone, at (${\ensuremath{\epsilon}}_{xx}=0.194$, ${\ensuremath{\sigma}}_{xx}=110\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, ${\ensuremath{\epsilon}}_{yy}=\ensuremath{-}0.016$) and (${\ensuremath{\epsilon}}_{yy}=0.266$, ${\ensuremath{\sigma}}_{yy}=121\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, ${\ensuremath{\epsilon}}_{xx}=\ensuremath{-}0.027$), respectively. Both soft phonons are longitudinal elastic waves in the pulling direction, suggesting that brittle cleavage fracture may be an inherent behavior of graphene and carbon nanotubes at low temperatures. We also predict that a phonon band gap will appear in highly stretched graphene, which could be a useful spectroscopic signature for highly stressed carbon nanotubes.

1,370 citations

Journal ArticleDOI
TL;DR: The results suggest that the development of new variations in functional sites in the receptor-binding domain (RBD) of the spike seen in SARS-CoV-2 and viruses from pangolin SARSr-CoVs are likely caused by natural selection besides recombination.
Abstract: The SARS-CoV-2 epidemic started in late December 2019 in Wuhan, China, and has since impacted a large portion of China and raised major global concern. Herein, we investigated the extent of molecular divergence between SARS-CoV-2 and other related coronaviruses. Although we found only 4% variability in genomic nucleotides between SARS-CoV-2 and a bat SARS-related coronavirus (SARSr-CoV; RaTG13), the difference at neutral sites was 17%, suggesting the divergence between the two viruses is much larger than previously estimated. Our results suggest that the development of new variations in functional sites in the receptor-binding domain (RBD) of the spike seen in SARS-CoV-2 and viruses from pangolin SARSr-CoVs are likely caused by natural selection besides recombination. Population genetic analyses of 103 SARS-CoV-2 genomes indicated that these viruses had two major lineages (designated L and S), that are well defined by two different SNPs that show nearly complete linkage across the viral strains sequenced to date. We found that L lineage was more prevalent than the S lineage within the limited patient samples we examined. The implication of these evolutionary changes on disease etiology remains unclear. These findings strongly underscores the urgent need for further comprehensive studies that combine viral genomic data, with epidemiological studies of coronavirus disease 2019 (COVID-19).

1,369 citations

Journal ArticleDOI
TL;DR: Experiments on a number of challenging low-light images are present to reveal the efficacy of the proposed LIME and show its superiority over several state-of-the-arts in terms of enhancement quality and efficiency.
Abstract: When one captures images in low-light conditions, the images often suffer from low visibility. Besides degrading the visual aesthetics of images, this poor quality may also significantly degenerate the performance of many computer vision and multimedia algorithms that are primarily designed for high-quality inputs. In this paper, we propose a simple yet effective low-light image enhancement (LIME) method. More concretely, the illumination of each pixel is first estimated individually by finding the maximum value in R, G, and B channels. Furthermore, we refine the initial illumination map by imposing a structure prior on it, as the final illumination map. Having the well-constructed illumination map, the enhancement can be achieved accordingly. Experiments on a number of challenging low-light images are present to reveal the efficacy of our LIME and show its superiority over several state-of-the-arts in terms of enhancement quality and efficiency.

1,364 citations

Journal ArticleDOI
TL;DR: In this paper, the physicochemical properties and characteristics of the components and compositions of biomass pyrolysis oil have been discussed with some suggestions on upgrading and applications of bio-oil in the decades.

1,363 citations


Authors

Showing all 422053 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Zhong Lin Wang2452529259003
Yi Chen2174342293080
Jing Wang1844046202769
Peidong Yang183562144351
Xiaohui Fan183878168522
H. S. Chen1792401178529
Douglas Scott1781111185229
Jie Zhang1784857221720
Pulickel M. Ajayan1761223136241
Feng Zhang1721278181865
Andrea Bocci1722402176461
Yang Yang1712644153049
Lei Jiang1702244135205
Yang Gao1682047146301
Network Information
Related Institutions (5)
Tsinghua University
200.5K papers, 4.5M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Peking University
181K papers, 4.1M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023170
20222,918
202159,109
202055,057
201952,186
201846,329