scispace - formally typeset
Search or ask a question
Institution

Chinese Academy of Sciences

GovernmentBeijing, Beijing, China
About: Chinese Academy of Sciences is a government organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 421602 authors who have published 634849 publications receiving 14894293 citations. The organization is also known as: CAS.
Topics: Catalysis, Population, Laser, Adsorption, Graphene


Papers
More filters
Journal ArticleDOI
16 Jan 2007-Catena
TL;DR: Based on official statistics and data derived from satellite imagery, dynamics of China's cultivated land over the past two decades is outlined and the causes and destinations of cultivated land loss are analyzed in this article.
Abstract: To feed its 1.3 billion population with a per capita cultivated land far below the world average, China is already facing a great challenge of land scarcity. Accelerated urbanization along with explosive economic growth has further worsened the shortage of agricultural land over the last two decades. Increasing concern over land is expressed in terms of soil availability for grain production and soil quality degradation. Based on official statistics and data derived from satellite imagery, dynamics of China's cultivated land over the past two decades is outlined and the causes and destinations of cultivated land loss are analyzed in this paper. Particularly, urbanization-related land-use changes and their spatial variation across the country are demonstrated. Furthermore, impacts of urbanization and associated waste disposals, consequent shifts of soil utilization on areal soil quality are expatiated. It is initially concluded that China's cultivated land is shrinking at a rather shocking rate. Although conversion to urban and industrial uses took up a comparatively small share of total cultivated land loss, urbanization should still be considered as a great threat to future agricultural production for several reasons. Urbanization is increasing the risk of soil pollution through waste disposal and acid deposition derived from urban air pollution. Facing rapid urbanization, China is making positive policy responses to the challenge of decreasing availability of cultivated land and offering unremitting efforts towards the goal of national food security.

785 citations

Journal ArticleDOI
TL;DR: In this article, an integrated framework based on telecoupling, an umbrella concept that refers to socioeconomic and environmental interactions over distances, is proposed to understand and integrate various distant interactions better.
Abstract: Interactions between distant places are increasingly widespread and influential, often leading to unexpected outcomes with profound implications for sustainability. Numerous sustainability studies have been conducted within a particular place with little attention to the impacts of distant interactions on sustainability in multiple places. Although distant forces have been studied, they are usually treated as exogenous variables and feedbacks have rarely been considered. To understand and integrate various distant interactions better, we propose an integrated framework based on telecoupling, an umbrella concept that refers to socioeconomic and environmental interactions over distances. The concept of telecoupling is a logical extension of research on coupled human and natural systems, in which interactions occur within particular geographic locations. The telecoupling framework contains five major interrelated components, i.e., coupled human and natural systems, flows, agents, causes, and effects. We illustrate the framework using two examples of distant interactions associated with trade of agricultural commodities and invasive species, highlight the implications of the framework, and discuss research needs and approaches to move research on telecouplings forward. The framework can help to analyze system components and their interrelationships, identify research gaps, detect hidden costs and untapped benefits, provide a useful means to incorporate feedbacks as well as trade-offs and synergies across multiple systems (sending, receiving, and spillover systems), and improve the understanding of distant interactions and the effectiveness of policies for socioeconomic and environmental sustainability from local to global levels.

785 citations

Journal ArticleDOI
TL;DR: In this article, the spin-orbit gap in a two-dimensional honeycomb lattice of carbon atoms has been investigated and it has been shown that it can open up a gap of the order of 10 − 3 ϵ ϵπ{0.3em}{0ex}}\mathrm{meV}$ at the Dirac points.
Abstract: Even though graphene is a low-energy system consisting of a two-dimensional honeycomb lattice of carbon atoms, its quasiparticle excitations are fully described by the $(2+1)$-dimensional relativistic Dirac equation. In this paper we show that, while the spin-orbit interaction in graphene is of the order of $4\phantom{\rule{0.3em}{0ex}}\mathrm{meV}$, it opens up a gap of the order of ${10}^{\ensuremath{-}3}\phantom{\rule{0.3em}{0ex}}\mathrm{meV}$ at the Dirac points. We present a first-principles calculation of the spin-orbit gap, and explain the behavior in terms of a simple tight-binding model. Our result also shows that the recently predicted quantum spin Hall effect in graphene can occur only at unrealistically low temperature.

785 citations

Journal ArticleDOI
14 Jul 2005-Nature
TL;DR: Cases of disease caused by H5N1 and transmission of the virus among migratory geese populations in western China are described and this outbreak may help to spread the virus over and beyond the Himalayas.
Abstract: A worrying development could help to spread this dangerous virus beyond its stronghold in southeast Asia. The highly pathogenic H5N1 influenza virus has become endemic in poultry in southeast Asia since 2003 and constitutes a major pandemic threat to humans1. Here we describe cases of disease caused by H5N1 and transmission of the virus among migratory geese populations in western China. This outbreak may help to spread the virus over and beyond the Himalayas and has important implications for developing control strategies.

785 citations

Journal ArticleDOI
TL;DR: In this paper, an active layer comprising a new widebandgap polymer donor named PBQx-TF and a new low-bandgap non-fullerene acceptor (NFA) named eC9-2Cl is rationally designed.
Abstract: Improving power conversion efficiency (PCE) is important for broadening the applications of organic photovoltaic (OPV) cells. Here, a maximum PCE of 19.0% (certified value of 18.7%) is achieved in single-junction OPV cells by combining material design with a ternary blending strategy. An active layer comprising a new wide-bandgap polymer donor named PBQx-TF and a new low-bandgap non-fullerene acceptor (NFA) named eC9-2Cl is rationally designed. With optimized light utilization, the resulting binary cell exhibits a good PCE of 17.7%. An NFA F-BTA3 is then added to the active layer as a third component to simultaneously improve the photovoltaic parameters. The improved light unitization, cascaded energy level alignment, and enhanced intermolecular packing result in open-circuit voltage of 0.879 V, short-circuit current density of 26.7 mA cm-2 , and fill factor of 0.809. This study demonstrates that further improvement of PCEs of high-performance OPV cells requires fine tuning of the electronic structures and morphologies of the active layers.

784 citations


Authors

Showing all 422053 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Zhong Lin Wang2452529259003
Yi Chen2174342293080
Jing Wang1844046202769
Peidong Yang183562144351
Xiaohui Fan183878168522
H. S. Chen1792401178529
Douglas Scott1781111185229
Jie Zhang1784857221720
Pulickel M. Ajayan1761223136241
Feng Zhang1721278181865
Andrea Bocci1722402176461
Yang Yang1712644153049
Lei Jiang1702244135205
Yang Gao1682047146301
Network Information
Related Institutions (5)
Tsinghua University
200.5K papers, 4.5M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

93% related

Peking University
181K papers, 4.1M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023170
20222,918
202159,109
202055,057
201952,186
201846,329