scispace - formally typeset
Search or ask a question
Institution

Cornell University

EducationIthaca, New York, United States
About: Cornell University is a education organization based out in Ithaca, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 102246 authors who have published 235546 publications receiving 12283673 citations. The organization is also known as: Cornell & CUI.


Papers
More filters
Journal ArticleDOI
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016.

10,401 citations

Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
TL;DR: Astropy as discussed by the authors is a Python package for astronomy-related functionality, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Abstract: We present the first public version (v02) of the open-source and community-developed Python package, Astropy This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions Significant functionality is under activedevelopment, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

9,720 citations

Journal ArticleDOI
TL;DR: This paper summarizes the insights gained in automatic term weighting, and provides baseline single term indexing models with which other more elaborate content analysis procedures can be compared.
Abstract: The experimental evidence accumulated over the past 20 years indicates that textindexing systems based on the assignment of appropriately weighted single terms produce retrieval results that are superior to those obtainable with other more elaborate text representations. These results depend crucially on the choice of effective term weighting systems. This paper summarizes the insights gained in automatic term weighting, and provides baseline single term indexing models with which other more elaborate content analysis procedures can be compared.

9,460 citations

Journal ArticleDOI
06 Apr 1990-Science
TL;DR: The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation.
Abstract: Molecular excitation by the simultaneous absorption of two photons provides intrinsic three-dimensional resolution in laser scanning fluorescence microscopy. The excitation of fluorophores having single-photon absorption in the ultraviolet with a stream of strongly focused subpicosecond pulses of red laser light has made possible fluorescence images of living cells and other microscopic objects. The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation. This technique also provides unprecedented capabilities for three-dimensional, spatially resolved photochemistry, particularly photolytic release of caged effector molecules.

8,905 citations


Authors

Showing all 103081 results

NameH-indexPapersCitations
Eric S. Lander301826525976
David Miller2032573204840
Lewis C. Cantley196748169037
Charles A. Dinarello1901058139668
Scott M. Grundy187841231821
Paul G. Richardson1831533155912
Chris Sander178713233287
David R. Williams1782034138789
David L. Kaplan1771944146082
Kari Alitalo174817114231
Richard K. Wilson173463260000
George F. Koob171935112521
Avshalom Caspi170524113583
Derek R. Lovley16858295315
Stephen B. Baylin168548188934
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

Yale University
220.6K papers, 12.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023309
20221,363
202112,457
202012,139
201910,787
20189,905