scispace - formally typeset
Search or ask a question
Institution

Cornell University

EducationIthaca, New York, United States
About: Cornell University is a education organization based out in Ithaca, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 102246 authors who have published 235546 publications receiving 12283673 citations. The organization is also known as: Cornell & CUI.


Papers
More filters
Journal ArticleDOI
29 Mar 2013-Science
TL;DR: Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation.
Abstract: The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.

1,881 citations

Book ChapterDOI
08 Sep 2018
TL;DR: In this article, the authors propose a multimodal unsupervised image-to-image (MUNIT) framework, where the image representation can be decomposed into a content code that is domain-invariant and a style code that captures domain-specific properties.
Abstract: Unsupervised image-to-image translation is an important and challenging problem in computer vision. Given an image in the source domain, the goal is to learn the conditional distribution of corresponding images in the target domain, without seeing any examples of corresponding image pairs. While this conditional distribution is inherently multimodal, existing approaches make an overly simplified assumption, modeling it as a deterministic one-to-one mapping. As a result, they fail to generate diverse outputs from a given source domain image. To address this limitation, we propose a Multimodal Unsupervised Image-to-image \(\text{ Translation } \text{(MUNIT) }\) framework. We assume that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties. To translate an image to another domain, we recombine its content code with a random style code sampled from the style space of the target domain. We analyze the proposed framework and establish several theoretical results. Extensive experiments with comparisons to state-of-the-art approaches further demonstrate the advantage of the proposed framework. Moreover, our framework allows users to control the style of translation outputs by providing an example style image. Code and pretrained models are available at https://github.com/nvlabs/MUNIT.

1,874 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: In this paper, the authors demonstrate a technique that allows direct electrical measurements of microwave-frequency dynamics in individual nanomagnets, propelled by a d.c. spin-polarized current.
Abstract: The recent discovery that a spin-polarized electrical current can apply a large torque to a ferromagnet, through direct transfer of spin angular momentum, offers the possibility of manipulating magnetic-device elements without applying cumbersome magnetic fields. However, a central question remains unresolved: what type of magnetic motions can be generated by this torque? Theory predicts that spin transfer may be able to drive a nanomagnet into types of oscillatory magnetic modes not attainable with magnetic fields alone, but existing measurement techniques have provided only indirect evidence for dynamical states. The nature of the possible motions has not been determined. Here we demonstrate a technique that allows direct electrical measurements of microwave-frequency dynamics in individual nanomagnets, propelled by a d.c. spin-polarized current. We show that spin transfer can produce several different types of magnetic excitation. Although there is no mechanical motion, a simple magnetic-multilayer structure acts like a nanoscale motor; it converts energy from a d.c. electrical current into high-frequency magnetic rotations that might be applied in new devices including microwave sources and resonators.

1,869 citations

Journal ArticleDOI
05 Sep 2003-Science
TL;DR: The prevalence of self-reactive antibody formation and its regulation in human B cells is determined and a majority (55 to 75%) of all antibodies expressed by early immature B cells displayedSelf-reactivity, including polyreactive and anti-nuclear specificities.
Abstract: During B lymphocyte development, antibodies are assembled by random gene segment reassortment to produce a vast number of specificities. A potential disadvantage of this process is that some of the antibodies produced are self-reactive. We determined the prevalence of self-reactive antibody formation and its regulation in human B cells. A majority (55 to 75%) of all antibodies expressed by early immature B cells displayed self-reactivity, including polyreactive and anti-nuclear specificities. Most of these autoantibodies were removed from the population at two discrete checkpoints during B cell development. Inefficient checkpoint regulation would lead to substantial increases in circulating autoantibodies.

1,863 citations

Journal ArticleDOI
19 Oct 2007-Cell
TL;DR: It is shown that molecular recapitulations of three prototypical adaptations associated with the unsusceptible phenotype are each sufficient to promote resistant behavior and validate a multidisciplinary approach to examine the neurobiological mechanisms of variations in stress resistance.

1,863 citations


Authors

Showing all 103081 results

NameH-indexPapersCitations
Eric S. Lander301826525976
David Miller2032573204840
Lewis C. Cantley196748169037
Charles A. Dinarello1901058139668
Scott M. Grundy187841231821
Paul G. Richardson1831533155912
Chris Sander178713233287
David R. Williams1782034138789
David L. Kaplan1771944146082
Kari Alitalo174817114231
Richard K. Wilson173463260000
George F. Koob171935112521
Avshalom Caspi170524113583
Derek R. Lovley16858295315
Stephen B. Baylin168548188934
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

Yale University
220.6K papers, 12.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023309
20221,363
202112,457
202012,139
201910,787
20189,905