scispace - formally typeset
Search or ask a question
Institution

Eppley Institute for Research in Cancer and Allied Diseases

About: Eppley Institute for Research in Cancer and Allied Diseases is a based out in . It is known for research contribution in the topics: Pancreatic cancer & Cancer. The organization has 965 authors who have published 1396 publications receiving 58994 citations.
Topics: Pancreatic cancer, Cancer, DNA, Gene, Cancer cell


Papers
More filters
Journal ArticleDOI
TL;DR: Analysis of lymphoid tissues from patients with X‐linked lymphoproliferative disease and patients with sporadic fatal infectious mononucleosis revealed that in 13 cases the proliferating B cells were polyclonal, LCL‐like, and in 2 cases they were monoclonal, malignant lymphomalike.
Abstract: We assessed 33 lymphoid tissues from 15 patients, including 7 with X-linked lymphoproliferative disease (XLP) and 8 pa tients with sporadic fatal infectious mononucleosis (IM), to determine whether the cellular infiltrate had the immu nophenotype and expressed Epstein-Barr virus (EBV)-encoded proteins characteristic of either EBV-immortalized lymphoblastoid cell lines (LCL) or EBV-carrying Burkitt lymphoma (BL) cells. The results of these studies revealed that in 13 cases the proliferating B cells were polyclonal, LCL-like, and in 2 cases they were monoclonal, malignant lymphomalike.

50 citations

Journal ArticleDOI
16 Apr 2015-Oncogene
TL;DR: Overall, the present study provides a novel mechanism of smoking-induced increase in ADM in the presence of constitutively active K-ras mutation, which resulted in partial suppression of the immune system early during PC progression.
Abstract: Smoking is an established risk factor for pancreatic cancer (PC), but late diagnosis limits the evaluation of its mechanistic role in the progression of PC. We used a well-established genetically engineered mouse model (LSL-K-ras(G12D)) of PC to elucidate the role of smoking during initiation and development of pancreatic intraepithelial neoplasia (PanIN). The 10-week-old floxed mice (K-ras(G12D); Pdx-1cre) and their control unfloxed (LSL-K-ras(G12D)) littermates were exposed to cigarette smoke (total suspended particles: 150 mg/m(3)) for 20 weeks. Smoke exposure significantly accelerated the development of PanIN lesions in the floxed mice, which correlated with tenfold increase in the expression of cytokeratin19. The systemic accumulation of myeloid-derived suppressor cells (MDSCs) decreased significantly in floxed mice compared with unfloxed controls (P<0.01) after the smoke exposure with the concurrent increase in the macrophage (P<0.05) and dendritic cell (DCs) (P<0.01) population. Further, smoking-induced inflammation (IFN-γ, CXCL2; P<0.05) was accompanied by enhanced activation of pancreatic stellate cells and elevated levels of serum retinoic acid-binding protein 4, indicating increased bioavailability of retinoic acid which contributes to differentiation of MDSCs to tumor-associated macrophages (TAMs) and DCs. TAMs predominantly contribute to the increased expression of heparin-binding epidermal growth factor-like growth factor (EGFR ligand) in pre-neoplastic lesions in smoke-exposed floxed mice that facilitate acinar-to-ductal metaplasia (ADM). Further, smoke exposure also resulted in partial suppression of the immune system early during PC progression. Overall, the present study provides a novel mechanism of smoking-induced increase in ADM in the presence of constitutively active K-ras mutation.

50 citations

Journal ArticleDOI
TL;DR: The finding that FGF induces the soft agar growth of both non-transformed cell lines, together with the findings of others that both forms of FGF are angiogenic, lends further support to the suggestion that F GF plays a significant role in the in vivo growth of some, and possibly many, tumors.
Abstract: Recent studies have determined that fibroblast growth factor (FGF) potentiates the soft agar growth responses of NRK-49F cells to several combinations of transforming growth factors (TGFs). In the current study, two other non-transformed cell lines, NR-6 and AKR-2B, which do not spontaneously form colonies in soft agar, were examined for their soft agar growth responses to FGF. Both the acidic form and basic form of FGF were found to induce the soft agar growth of these cells. In the case of NR-6 cells, the effects of TGF-β were also examined. TFG-β potentiated the soft agar growth response of NR-6 cells to FGF, but on its own did not induce soft agar growth. Attempts to identify other factors capable of modulating the response of these cells to FGF, led to the finding that both 12-0-tetra-decanoylphorbol-13-acetate and retinoic acid suppress FGF-induced soft agar growth of NR-6 cells and AKRR-2B cells. The finding that FGF induces the soft agar growth of both non-transformed cell lines, together with the findings of others that both forms of FGF are angiogenic, lends further support to the suggestion that FGF plays a significant role in the in vivo growth of some, and possibly many, tumors.

50 citations

Journal ArticleDOI
TL;DR: It is demonstrated that all four selected compounds can inhibit the formation of depurinating estrogen-DNA adducts and set the stage for studies of their ability to inhibit adduct formation and malignant transformation in mammary epithelial cells.
Abstract: Specific metabolites of estrogens, catechol estrogen-3,4-quinones, if produced in relatively large amounts, can become chemical carcinogens by reacting with DNA to form predominantly depurinating DNA adducts. Estradiol (E2)-3,4-quinone (Q) reacts with DNA to form predominantly the depurinating DNA adducts, 4-hydroxyestradiol (OHE2)-1-N3Ade and 4-OHE2-1-N7Gua. The depurinating adducts induce mutations by error-prone repair. We have conducted a study in which selected natural chemopreventing agents, N-acetylcysteine (NAcCys), melatonin, reduced lipoic acid, and resveratrol, have been tested for their ability to prevent the reaction of E2-3,4-Q with DNA. When DNA was incubated with E2-3,4-Q or lactoperoxidase-activated 4-OHE2 in the presence of an antioxidant, the formation of the N3Ade and N7Gua adducts was reduced. E2-3,4-Q or lactoperoxidase-oxidized 4-OHE2 (87 µM final concentration) was incubated with calf-thymus DNA and one of the antioxidants at different ratios (1:0, 1:0.3, 1:1, and 1:3 with respect ...

50 citations

Journal ArticleDOI
TL;DR: It is determined that the knockdown of Banf1 alters the cell cycle distribution of both human and mouse ESCs by causing an uncharacteristic increase in the proportion of cells in the G2–M phase of thecell cycle.
Abstract: Self-renewal is a complex biological process necessary for maintaining the pluripotency of embryonic stem cells (ESCs). Recent studies have used global proteomic techniques to identify proteins that associate with the master regulators Oct4, Nanog and Sox2 in ESCs or in ESCs during the early stages of differentiation. Through an unbiased proteomic screen, Banf1 was identified as a Sox2-associated protein. Banf1 has been shown to be essential for worm and fly development but, until now, its role in mammalian development and ESCs has not been explored. In this study, we examined the effect of knocking down Banf1 on ESCs. We demonstrate that the knockdown of Banf1 promotes the differentiation of mouse ESCs and decreases the survival of both mouse and human ESCs. For mouse ESCs, we demonstrate that knocking down Banf1 promotes their differentiation into cells that exhibit markers primarily associated with mesoderm and trophectoderm. Interestingly, knockdown of Banf1 disrupts the survival of human ESCs without significantly reducing the expression levels of the master regulators Sox2, Oct4 and Nanog or inducing the expression of markers of differentiation. Furthermore, we determined that the knockdown of Banf1 alters the cell cycle distribution of both human and mouse ESCs by causing an uncharacteristic increase in the proportion of cells in the G2–M phase of the cell cycle.

50 citations


Authors

Showing all 965 results

NameH-indexPapersCitations
Michael R. Green12653757447
Henrik Clausen10952049820
Howard E. Gendelman10156739460
James O. Armitage9755859171
Surinder K. Batra8756430653
Michael L. Gross8270127140
Michael A. Hollingsworth7624924460
Peter M. J. Burgers7316716123
Patrick L. Iversen6831913707
J. Alan Diehl6716819966
Samuel M. Cohen6542115940
Kenneth H. Cowan6417814094
Gangning Liang6015018081
Michael G. Brattain5919913199
Thomas E. Smithgall571848904
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

94% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

Scripps Research Institute
32.8K papers, 2.9M citations

91% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

90% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20223
202188
202069
201964
201842
201757