scispace - formally typeset
Search or ask a question
Institution

Eppley Institute for Research in Cancer and Allied Diseases

About: Eppley Institute for Research in Cancer and Allied Diseases is a based out in . It is known for research contribution in the topics: Pancreatic cancer & Cancer. The organization has 965 authors who have published 1396 publications receiving 58994 citations.
Topics: Pancreatic cancer, Cancer, DNA, Gene, Cancer cell


Papers
More filters
Journal ArticleDOI
02 May 2017-PLOS ONE
TL;DR: It is suggested that MUC1 serves as a metabolic regulator in TNBC, facilitating the metabolic reprogramming of glutamine utilization that influences TNBC tumor growth.
Abstract: Background Mucin1 (MUC1), a glycoprotein associated with chemoresistance and an aggressive cancer phenotype, is aberrantly overexpressed in triple-negative breast cancer (TNBC). Recent studies suggest that MUC1 plays a role in modulating cancer cell metabolism and thereby supports tumor growth. Herein, we examined the role of MUC1 in metabolic reprogramming in TNBC. Methods MUC1 was stably overexpressed in MDA-MB-231 TNBC cells and stably knocked down in MDA-MB-468 cells. We performed liquid chromatography-coupled tandem mass spectrometry-assisted metabolomic analyses and physiological assays, which indicated significant alterations in the metabolism of TNBC cells due to MUC1 expression. Results Differential analyses identified significant differences in metabolic pathways implicated in cancer cell growth. In particular, MUC1 expression altered glutamine dependency of the cells, which can be attributed in part to the changes in the expression of genes that regulate glutamine metabolism, as observed by real-time PCR analysis. Furthermore, MUC1 expression altered the sensitivity of cells to transaminase inhibitor aminooxyacetate (AOA), potentially by altering glutamine metabolism. Conclusions Collectively, these results suggest that MUC1 serves as a metabolic regulator in TNBC, facilitating the metabolic reprogramming of glutamine utilization that influences TNBC tumor growth.

29 citations

Journal ArticleDOI
TL;DR: The function of this authentic prostate-specific tumor suppressor and the mechanism behind the loss of cPAcP expression leading to prostate carcinogenesis are discussed.

29 citations

Journal ArticleDOI
TL;DR: A novel cell culture system is established to help provide new mechanistic insights into CAG•CTG repeat instability and recapitulate certain features of human genetics.
Abstract: Trinucleotide repeats (TNRs) undergo high frequency mutagenesis to cause at least 15 neurodegenerative diseases. To understand better the molecular mechanisms of TNR instability in cultured cells, a new genetic assay was created using a shuttle vector. The shuttle vector contains a promoter-TNR-reporter gene construct whose expression is dependent on TNR length. The vector harbors the SV40 ori and large T antigen gene, allowing portability between primate cell lines. The shuttle vector is propagated in cultured cells, then recovered and analyzed in yeast using selection for reporter gene expression. We show that (CAG•CTG)25−33 contracts at frequencies as high as 1% in 293T and 293 human cells and in COS-1 monkey cells, provided that the plasmid undergoes replication. Hairpin-forming capacity of the repeat sequence stimulated contractions. Evidence for a threshold was observed between 25 and 33 repeats in COS-1 cells, where contraction frequencies increased sharply (up 720%) over a narrow range of repeat lengths. Expression of the mismatch repair protein Mlh1 does not correlate with repeat instability, suggesting contractions are independent of mismatch repair in our system. Together, these findings recapitulate certain features of human genetics and therefore establish a novel cell culture system to help provide new mechanistic insights into CAG•CTG repeat instability.

29 citations

Journal ArticleDOI
TL;DR: The short-term TPA-induced ODC was validated for evaluating topical formulations of apigenin and Glucuronidation/sulfation appeared not to be involved in apigen in's chemopreventive activity.
Abstract: Purpose. This study was designed to (a) establish a short-term in vivo system to evaluate topical formulations of apigenin, (b) determine whether apigenin should be topically delivered to the local skin tissue or systemic circulation, (c) investigate if biotransformation was involved in apigenin's chemopreventive activity.

29 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the estrogen diethylstilbestrol (DES) inhibits cell proliferation within the thymic cortex, the primary site of thymocyte proliferation, which suggests that genetic factors may regulate estrogen action within this tissue by affecting estrogen responsive pathways that control cell proliferation.

28 citations


Authors

Showing all 965 results

NameH-indexPapersCitations
Michael R. Green12653757447
Henrik Clausen10952049820
Howard E. Gendelman10156739460
James O. Armitage9755859171
Surinder K. Batra8756430653
Michael L. Gross8270127140
Michael A. Hollingsworth7624924460
Peter M. J. Burgers7316716123
Patrick L. Iversen6831913707
J. Alan Diehl6716819966
Samuel M. Cohen6542115940
Kenneth H. Cowan6417814094
Gangning Liang6015018081
Michael G. Brattain5919913199
Thomas E. Smithgall571848904
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

94% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

Scripps Research Institute
32.8K papers, 2.9M citations

91% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

90% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20223
202188
202069
201964
201842
201757