scispace - formally typeset
Search or ask a question
Institution

Eppley Institute for Research in Cancer and Allied Diseases

About: Eppley Institute for Research in Cancer and Allied Diseases is a based out in . It is known for research contribution in the topics: Pancreatic cancer & Cancer. The organization has 965 authors who have published 1396 publications receiving 58994 citations.
Topics: Pancreatic cancer, Cancer, DNA, Gene, Cancer cell


Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that Sox2 functions as a molecular rheostat for the control of a key transcriptional regulatory network in embryonic stem and embryonal carcinoma cells and inhibits the endogenous expression of five Sox2:Oct-3/4 target genes.
Abstract: Recent studies have identified large sets of genes in embryonic stem and embryonal carcinoma cells that are associated with the transcription factors Sox2 and Oct-3/4. Other studies have shown that Sox2 and Oct-3/4 work together cooperatively to stimulate the transcription of their own genes as well as a network of genes required for embryogenesis. Moreover, small changes in the levels of Sox2:Oct-3/4 target genes alter the fate of stem cells. Although positive feedforward and feedback loops have been proposed to explain the activation of these genes, little is known about the mechanisms that prevent their overexpression. Here, we demonstrate that elevating Sox2 levels inhibits the endogenous expression of five Sox2:Oct-3/4 target genes. In addition, we show that Sox2 repression is dependent on the binding sites for Sox2 and Oct-3/4. We also demonstrate that inhibition is dependent on the C-terminus of Sox2, which contains its transactivation domain. Finally, our studies argue that overexpression of neither Oct-3/4 nor Nanog broadly inhibits Sox2:Oct-3/4 target genes. Collectively, these studies provide new insights into the diversity of mechanisms that control Sox2:Oct-3/4 target genes and argue that Sox2 functions as a molecular rheostat for the control of a key transcriptional regulatory network.

113 citations

Journal ArticleDOI
TL;DR: It is argued that Sox2, along with other pluripotency‐associated transcription factors, is woven into highly interconnected regulatory networks that function at several levels to control the fate of ESC.
Abstract: Small increases in the levels of master regulators, such as Sox2, in embryonic stem cells (ESC) have been shown to promote their differentiation. However, the mechanism by which Sox2 controls the fate of ESC is poorly understood. In this study, we employed multidimensional protein identification technology and identified >60 nuclear proteins that associate with Sox2 early during ESC differentiation. Gene ontology analysis of Sox2-associated proteins indicates that they participate in a wide range of processes. Equally important, a significant number of the Sox2-associated proteins identified in this study have been shown previously to interact with Oct4, Nanog, Sall4, and Essrb. Moreover, we examined the impact of manipulating the expression of a Sox2-associated protein on the fate of ESC. Using ESC engineered for inducible expression of Sox21, we show that ectopic expression of Sox21 in ESC induces their differentiation into specific cell types, including those that express markers representative of neurectoderm and heart development. Collectively, these studies provide new insights into the range of molecular processes through which Sox2 is likely to influence the fate of ESC and provide further support for the conclusion that the expression of Sox proteins in ESC must be precisely regulated. Importantly, our studies also argue that Sox2, along with other pluripotency-associated transcription factors, is woven into highly interconnected regulatory networks that function at several levels to control the fate of ESC.

113 citations

Journal ArticleDOI
TL;DR: Heterozygosity for the variant allele caused a strong mutator effect comparable with that of complete MMR deficiency, providing an explanation for why loss of heterozygosity is not required for the development of Polε-mutant human tumors.
Abstract: Exonucleolytic proofreading and DNA mismatch repair (MMR) act in series to maintain high-fidelity DNA replication and to avoid mutagenesis. MMR defects elevate the overall mutation rate and are associated with increased cancer incidence. Hypermutable colorectal and endometrial tumors with functional MMR were recently reported to carry amino acid substitutions in the exonuclease domain of DNA polymerase e (Pole). This created a notion that loss of the proofreading activity of Pole is an initiating cause of some sporadic human cancers. In this study, we identified a somatic P286R substitution in the conserved ExoI motif of Pole in a collection of 52 sporadic colorectal tumor specimens. This change has been repeatedly observed in colorectal and endometrial tumors in previous studies despite many possible ways to inactivate Pole proofreading. To understand the reasons for the recurrent appearance of the P286R variant, we characterized its functional consequences using the yeast model system. An analogous substitution in the yeast Pole produced an unusually strong mutator phenotype exceeding that of proofreading-deficient mutants by two orders of magnitude. This argues that the P286R mutation acts at some level other than loss of exonuclease to elevate cancer risk. Heterozygosity for the variant allele caused a strong mutator effect comparable with that of complete MMR deficiency, providing an explanation for why loss of heterozygosity is not required for the development of Pole-mutant human tumors.

113 citations

Journal ArticleDOI
04 Mar 2010-Oncogene
TL;DR: The findings show that MIC-1 has a role in prostate cancer metastasis, in part, by promoting the motility of these cells by Activation of the FAK–RhoA signaling pathway is involved in MIC- 1-mediated actin reorganization, and thus, leads to an increase in the Motility of prostate cancer cells.
Abstract: An elevated level of macrophage inhibitory cytokine-1 (MIC-1) is reported in the sera of patients with metastatic prostate cancer compared with that of benign diseases and healthy adults. We investigated the mechanistic role of MIC-1 overexpression in the metastasis of prostate cancer cells. Our study showed a progressive increase in secretory MIC-1 production correlated with the increase in the metastatic potential of PC-3 and LNPCa prostate cancer metastatic variants. Further, the in vitro studies using ‘loss-’ and ‘gain’-of-function approaches showed that ectopic overexpression of MIC-1 (PC-3-MIC-1) and forced downregulation of MIC-1(PC-3M-siMIC-1) enhanced and reduced the motility and invasiveness of these cells, respectively. Supporting our in vitro observations, all the mice orthotopically implanted with PC-3-MIC-1 cells developed metastasis compared with none in the PC-3-vector group. Our results showed that MIC-1 overexpression was associated with apparent changes in actin organization. In addition, an enhanced phosphorylation of focal adhesion kinase (FAK) and guanosine-5′-triphosphate (GTP)-bound RhoA was also seen; however, no significant change was observed in total FAK and RhoA levels in the PC-3-MIC-1 cells. Altogether, our findings show that MIC-1 has a role in prostate cancer metastasis, in part, by promoting the motility of these cells. Activation of the FAK–RhoA signaling pathway is involved in MIC-1-mediated actin reorganization, and thus, leads to an increase in the motility of prostate cancer cells.

113 citations

Journal ArticleDOI
16 Jun 2016-Nature
TL;DR: It is shown that the stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression in both genetic models and patient derived xenografts, and that Msi-expressing cells are key drivers of pancreatIC cancer.
Abstract: Pancreatic intraepithelial neoplasia is a pre-malignant lesion that can progress to pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical presentation and profound drug resistance. The genomic alterations that commonly occur in pancreatic cancer include activation of KRAS2 and inactivation of p53 and SMAD4 (refs 2-4). So far, however, it has been challenging to target these pathways therapeutically; thus the search for other key mediators of pancreatic cancer growth remains an important endeavour. Here we show that the stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression both in genetic models and in patient-derived xenografts. Specifically, we developed Msi reporter mice that allowed image-based tracking of stem cell signals within cancers, revealing that Msi expression rises as pancreatic intraepithelial neoplasia progresses to adenocarcinoma, and that Msi-expressing cells are key drivers of pancreatic cancer: they preferentially harbour the capacity to propagate adenocarcinoma, are enriched in circulating tumour cells, and are markedly drug resistant. This population could be effectively targeted by deletion of either Msi1 or Msi2, which led to a striking defect in the progression of pancreatic intraepithelial neoplasia to adenocarcinoma and an improvement in overall survival. Msi inhibition also blocked the growth of primary patient-derived tumours, suggesting that this signal is required for human disease. To define the translational potential of this work we developed antisense oligonucleotides against Msi; these showed reliable tumour penetration, uptake and target inhibition, and effectively blocked pancreatic cancer growth. Collectively, these studies highlight Msi reporters as a unique tool to identify therapy resistance, and define Msi signalling as a central regulator of pancreatic cancer.

112 citations


Authors

Showing all 965 results

NameH-indexPapersCitations
Michael R. Green12653757447
Henrik Clausen10952049820
Howard E. Gendelman10156739460
James O. Armitage9755859171
Surinder K. Batra8756430653
Michael L. Gross8270127140
Michael A. Hollingsworth7624924460
Peter M. J. Burgers7316716123
Patrick L. Iversen6831913707
J. Alan Diehl6716819966
Samuel M. Cohen6542115940
Kenneth H. Cowan6417814094
Gangning Liang6015018081
Michael G. Brattain5919913199
Thomas E. Smithgall571848904
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

94% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

Scripps Research Institute
32.8K papers, 2.9M citations

91% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

90% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20223
202188
202069
201964
201842
201757