scispace - formally typeset
Search or ask a question
Institution

Eppley Institute for Research in Cancer and Allied Diseases

About: Eppley Institute for Research in Cancer and Allied Diseases is a based out in . It is known for research contribution in the topics: Pancreatic cancer & Cancer. The organization has 965 authors who have published 1396 publications receiving 58994 citations.
Topics: Pancreatic cancer, Cancer, DNA, Gene, Cancer cell


Papers
More filters
Journal ArticleDOI
TL;DR: A novel role for mitochondrial dNTP metabolism in lung cancer tumor growth and progression is revealed, and implicate that the mitochondrial deoxynucleotide salvage pathway could be potentially targeted to prevent CSC‐mediated therapy resistance and metastatic recurrence.
Abstract: The mitochondrial deoxynucleotide triphosphate (dNTP) is maintained by the mitochondrial deoxynucleoside salvage pathway and dedicated for the mtDNA homeostasis, and the mitochondrial deoxyguanosine kinase (DGUOK) is a rate-limiting enzyme in this pathway. Here, we investigated the role of the DGUOK in the self-renewal of lung cancer stem-like cells (CSC). Our data support that DGUOK overexpression strongly correlates with cancer progression and patient survival. The depletion of DGUOK robustly inhibited lung adenocarcinoma tumor growth, metastasis, and CSC self-renewal. Mechanistically, DGUOK is required for the biogenesis of respiratory complex I and mitochondrial OXPHOS, which in turn regulates CSC self-renewal through AMPK-YAP1 signaling. The restoration of mitochondrial OXPHOS in DGUOK KO lung cancer cells using NDI1 was able to prevent AMPK-mediated phosphorylation of YAP and to rescue CSC stemness. Genetic targeting of DGUOK using doxycycline-inducible CRISPR/Cas9 was able to markedly induce tumor regression. Our findings reveal a novel role for mitochondrial dNTP metabolism in lung cancer tumor growth and progression, and implicate that the mitochondrial deoxynucleotide salvage pathway could be potentially targeted to prevent CSC-mediated therapy resistance and metastatic recurrence.

21 citations

Journal ArticleDOI
TL;DR: The results suggest that the retromer regulates apoptosis by facilitating Bcl-xL’s transport to the MOM, suggesting a previously uncharacterized relationship between the machineries of cell death/survival and endosomal trafficking.
Abstract: The anti-apoptotic Bcl-2 family protein Bcl-xL plays a critical role in cell survival by protecting the integrity of the mitochondrial outer membrane (MOM). The mechanism through which Bcl-xL is recruited to the MOM has not been fully discerned. The retromer is a conserved endosomal scaffold complex involved in membrane trafficking. Here we identify VPS35 and VPS26, two core components of the retromer, as novel regulators of Bcl-xL. We observed interactions and colocalization between Bcl-xL, VPS35, VPS26, and MICAL-L1, a protein involved in recycling endosome biogenesis that also interacts with the retromer. We also found that upon VPS35 depletion, levels of nonmitochondrial Bcl-xL were increased. In addition, retromer-depleted cells displayed more rapid Bax activation and apoptosis. These results suggest that the retromer regulates apoptosis by facilitating Bcl-xL's transport to the MOM. Importantly, our studies suggest a previously uncharacterized relationship between the machineries of cell death/survival and endosomal trafficking.

21 citations

Journal ArticleDOI
TL;DR: A mitochondrial redox and metabolic couple that when disrupted may alter cellular processes necessary for proper T-lymphocyte activation is demonstrated.
Abstract: While the role of mitochondrial metabolism in controlling T-lymphocyte activation and function is becoming more clear, the specifics of how mitochondrial redox signaling contributes to T-lymphocyte regulation remains elusive. Here, we examined the global effects of elevated mitochondrial superoxide (O2-) on T-lymphocyte activation using a novel model of inducible manganese superoxide dismutase (MnSOD) knock-out. Loss of MnSOD led to specific increases in mitochondrial O2- with no evident changes in hydrogen peroxide (H2O2), peroxynitrite (ONOO-), or copper/zinc superoxide dismutase (CuZnSOD) levels. Unexpectedly, both mitochondrial and glycolytic metabolism showed significant reductions in baseline, maximal capacities, and ATP production with increased mitochondrial O2- levels. MnSOD knock-out T-lymphocytes demonstrated aberrant activation including widespread dysregulation in cytokine production and increased cellular apoptosis. Interestingly, an elevated proliferative signature defined by significant upregulation of cell cycle regulatory genes was also evident in MnSOD knock-out T-lymphocytes, but these cells did not show accelerated proliferative rates. Global disruption in T-lymphocyte DNA methylation and hydroxymethylation was also observed with increased mitochondrial O2-, which was correlated to alterations in intracellular metabolite pools linked to the methionine cycle. Together, these results demonstrate a mitochondrial redox and metabolic couple that when disrupted may alter cellular processes necessary for proper T-lymphocyte activation.

21 citations

Journal ArticleDOI
TL;DR: The role of TPX2 as a novel co-activator of Aurora kinase B is supported, in addition to its already established role as an Aurora A activator, by experiments with pancreatic cancer cell lines suggest that this mechanism of Aurora B activation by TPX1 is likely to be conserved in human cells.

21 citations

Journal ArticleDOI
TL;DR: The solution form of IIANtr from Escherichia coli and its interaction with its partner protein, NPr, were characterized by nuclear magnetic resonance (NMR) spectroscopy and laid the foundation for future structure and function studies of the signal transducing proteins from this nitrogen pathway.
Abstract: The solution form of IIA(Ntr) from Escherichia coli and its interaction with its partner protein, NPr, were characterized by nuclear magnetic resonance (NMR) spectroscopy. The diffusion coefficient of the protein (1.13 x 10(-6) cm/sec) falls between that of HPr (approximately 9 kDa) and the N-terminal domain of E. coli enzyme I (approximately 30 kDa), indicating that the functional form of IIA(Ntr) is a monomer (approximately 18 kDa) in solution. Thus, the dimeric structure of the protein found in the crystal is an artifact of crystal packing. The residual dipolar coupling data of IIA(Ntr) (covering residues 11-155) measured in the absence and presence of a 4% polyethyleneglycol-hexanol liquid crystal alignment medium fit well to the coordinates of both molecule A and molecule B of the dimeric crystal structure, indicating that the 3D structures in solution and in the crystal are indeed similar for that protein region. However, only molecule A possesses an N-terminal helix identical to that derived from chemical shifts of IIA(Ntr) in solution. Further, the (15)N heteronuclear nuclear Overhauser effect (NOE) data also support molecule A as the representative structure in solution, with the terminal residues 1-8 and 158-163 more mobile. Chemical shift mapping identified the surface on IIA(Ntr) for NPr binding. Residues Gly61, Asp115, Ser125, Thr156, and nearby regions of IIA(Ntr) are more perturbed and participate in interaction with NPr. The active-site His73 of IIA(Ntr) for phosphoryl transfer was found in the Ndelta1-H tautomeric state. This work lays the foundation for future structure and function studies of the signal transducing proteins from this nitrogen pathway.

21 citations


Authors

Showing all 965 results

NameH-indexPapersCitations
Michael R. Green12653757447
Henrik Clausen10952049820
Howard E. Gendelman10156739460
James O. Armitage9755859171
Surinder K. Batra8756430653
Michael L. Gross8270127140
Michael A. Hollingsworth7624924460
Peter M. J. Burgers7316716123
Patrick L. Iversen6831913707
J. Alan Diehl6716819966
Samuel M. Cohen6542115940
Kenneth H. Cowan6417814094
Gangning Liang6015018081
Michael G. Brattain5919913199
Thomas E. Smithgall571848904
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

94% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

Scripps Research Institute
32.8K papers, 2.9M citations

91% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

90% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20223
202188
202069
201964
201842
201757