scispace - formally typeset
Search or ask a question
Institution

Iowa State University

EducationAmes, Iowa, United States
About: Iowa State University is a education organization based out in Ames, Iowa, United States. It is known for research contribution in the topics: Population & Gene. The organization has 50151 authors who have published 107716 publications receiving 3355909 citations. The organization is also known as: Iowa State University of Science and Technology & Iowa State College.


Papers
More filters
Journal ArticleDOI
TL;DR: The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of modeling efforts conducted by the USDA Agricultural Research Service (ARS) and has gained international acceptance as a robust interdisciplinary watershed modeling tool.
Abstract: The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of modeling efforts conducted by the USDA Agricultural Research Service (ARS). SWAT has gained international acceptance as a robust interdisciplinary watershed modeling tool as evidenced by international SWAT conferences, hundreds of SWAT-related papers presented at numerous other scientific meetings, and dozens of articles published in peer-reviewed journals. The model has also been adopted as part of the U.S. Environmental Protection Agency (USEPA) Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) software package and is being used by many U.S. federal and state agencies, including the USDA within the Conservation Effects Assessment Project (CEAP). At present, over 250 peer-reviewed published articles have been identified that report SWAT applications, reviews of SWAT components, or other research that includes SWAT. Many of these peer-reviewed articles are summarized here according to relevant application categories such as streamflow calibration and related hydrologic analyses, climate change impacts on hydrology, pollutant load assessments, comparisons with other models, and sensitivity analyses and calibration techniques. Strengths and weaknesses of the model are presented, and recommended research needs for SWAT are also provided.

2,357 citations

Journal ArticleDOI
TL;DR: A set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes are presented.
Abstract: Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms Recent reviews have described the range of assays that have been used for this purpose(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi) Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response

2,310 citations

Journal ArticleDOI
TL;DR: The authors provide an overview of latent class and growth mixture modeling techniques for applications in the social and psychological sciences, discuss current debates and issues, and provide readers with a practical guide for conducting LCGA and GMM using the Mplus software.
Abstract: In recent years, there has been a growing interest among researchers in the use of latent class and growth mixture modeling techniques for applications in the social and psychological sciences, in part due to advances in and availability of computer software designed for this purpose (e.g., Mplus and SAS Proc Traj). Latent growth modeling approaches, such as latent class growth analysis (LCGA) and growth mixture modeling (GMM), have been increasingly recognized for their usefulness for identifying homogeneous subpopulations within the larger heterogeneous population and for the identification of meaningful groups or classes of individuals. The purpose of this paper is to provide an overview of LCGA and GMM, compare the different techniques of latent growth modeling, discuss current debates and issues, and provide readers with a practical guide for conducting LCGA and GMM using the Mplus software. Researchers in the fields of social and psychological sciences are often interested in modeling the longitudinal developmental trajectories of individuals, whether for the study of personality development or for better understanding how social behaviors unfold over time (whether it be days, months, or years). This usually requires an extensive dataset consisting of longitudinal, repeated measures of variables, sometimes including multiple cohorts, and analyzing this data using various longitudinal latent variable modeling techniques such as latent growth curve models (cf. MacCallum & Austin, 2000). The objective of these approaches is to capture information about interindividual differences in intraindividual change over time (Nesselroade, 1991). However, conventional growth modeling approaches assume that individuals come from a single population and that a single growth trajectory can adequately approximate an entire population. Also, it is assumed that covariates that affect the growth factors influence each individual in the same way. Yet, theoretical frameworks and existing studies often categorize individuals into distinct subpopulations (e.g., socioeconomic classes, age groups, at-risk populations). For example, in the field of alcohol research, theoretical literature suggests different classes

2,273 citations

Journal ArticleDOI
TL;DR: The SWAT-CUP tool as discussed by the authors is a semi-distributed river basin model that requires a large number of input parameters, which complicates model parameterization and calibration, and is used to provide statistics for goodness-of-fit.
Abstract: SWAT (Soil and Water Assessment Tool) is a comprehensive, semi-distributed river basin model that requires a large number of input parameters, which complicates model parameterization and calibration. Several calibration techniques have been developed for SWAT, including manual calibration procedures and automated procedures using the shuffled complex evolution method and other common methods. In addition, SWAT-CUP was recently developed and provides a decision-making framework that incorporates a semi-automated approach (SUFI2) using both manual and automated calibration and incorporating sensitivity and uncertainty analysis. In SWAT-CUP, users can manually adjust parameters and ranges iteratively between autocalibration runs. Parameter sensitivity analysis helps focus the calibration and uncertainty analysis and is used to provide statistics for goodness-of-fit. The user interaction or manual component of the SWAT-CUP calibration forces the user to obtain a better understanding of the overall hydrologic processes (e.g., baseflow ratios, ET, sediment sources and sinks, crop yields, and nutrient balances) and of parameter sensitivity. It is important for future calibration developments to spatially account for hydrologic processes; improve model run time efficiency; include the impact of uncertainty in the conceptual model, model parameters, and measured variables used in calibration; and assist users in checking for model errors. When calibrating a physically based model like SWAT, it is important to remember that all model input parameters must be kept within a realistic uncertainty range and that no automatic procedure can substitute for actual physical knowledge of the watershed.

2,200 citations

Journal ArticleDOI
TL;DR: It is suggested that perisynaptic Schwann cells and synaptically associated astrocytes should be viewed as integral modulatory elements of tripartite synapses.

2,188 citations


Authors

Showing all 50392 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Yang Gao1682047146301
Steven N. Blair165879132929
Carlos Bustamante161770106053
Darien Wood1602174136596
Pete Smith1562464138819
Richard J. Davidson15660291414
Mark Raymond Adams1471187135038
H. A. Neal1411903115480
Mitchell Wayne1391810108776
Frank Filthaut1351684103590
Tiziano Rovelli135144190518
Francesco Navarria135153591427
Francesca Romana Cavallo135157192392
Yasar Onel134142492200
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

Cornell University
235.5K papers, 12.2M citations

93% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202378
2022550
20213,570
20203,803
20193,787
20183,741