scispace - formally typeset
Search or ask a question

Showing papers by "Iowa State University published in 2013"


01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986–2005, unless otherwise stated.

1,719 citations


Journal ArticleDOI
TL;DR: Geomorph as discussed by the authors is a software package for performing geometric morphometric shape analysis in the R statistical computing environment, where a set of shape variables are obtained from landmark coordinates following a Procrustes superimposition.
Abstract: Summary 1. Many ecological and evolutionary studies seek to explain patterns of shape variation and its covariation with other variables. Geometric morphometrics is often used for this purpose, where a set of shape variables are obtained from landmark coordinates following a Procrustes superimposition. 2. We introduce geomorph: a software package for performing geometric morphometric shape analysis in the R statistical computing environment. 3. Geomorph provides routines for all stages of landmark-based geometric morphometric analyses in two and three-dimensions. It is an open source package to read, manipulate, and digitize landmark data, generate shape variables via Procrustes analysis for points, curves and surfaces, perform statistical analyses of shape variation and covariation, and to provide graphical depictions of shapes and patterns of shape variation. An important contribution of geomorph is the ability to perform Procrustes superimposition on landmark points, as well as semilandmarks from curves and surfaces. 4. A wide range of statistical methods germane to testing ecological and evolutionary hypotheses of shape variation are provided. These include standard multivariate methods such as principal components analysis, and approaches for multivariate regression and group comparison. Methods for more specialized analyses, such as for assessing shape allometry, comparing shape trajectories, examining morphological integration, and for assessing phylogenetic signal, are also included. 5. Several functions are provided to graphically visualize results, including routines for examining variation in shape space, visualizing allometric trajectories, comparing specific shapes to one another and for plotting phylogenetic changes in morphospace. 6. Finally, geomorph participates to make available advanced geometric morphometric analyses through the R statistical computing platform.

1,561 citations


Journal ArticleDOI
TL;DR: The first quantitative review of the effects of biochar on multiple ecosystem functions and the central tendencies suggest that biochar holds promise in being a win-win-win solution to energy, carbon storage, and ecosystem function as mentioned in this paper.
Abstract: Biochar is a carbon-rich coproduct resulting from pyrolyzing biomass. When applied to the soil it resists decomposition, effectively sequestering the applied carbon and mitigating anthropogenic CO2 emissions. Other promoted benefits of biochar application to soil include increased plant productivity and reduced nutrient leaching. However, the effects of biochar are variable and it remains unclear if recent enthusiasm can be justified. We evaluate ecosystem responses to biochar application with a meta-analysis of 371 independent studies culled from 114 published manuscripts. We find that despite variability introduced by soil and climate, the addition of biochar to soils resulted, on average, in increased aboveground productivity, crop yield, soil microbial biomass, rhizobia nodulation, plant K tissue concentration, soil phosphorus (P), soil potassium (K), total soil nitrogen (N), and total soil carbon (C) compared with control conditions. Soil pH also tended to increase, becoming less acidic, following the addition of biochar. Variables that showed no significant mean response to biochar included belowground productivity, the ratio of aboveground : belowground biomass, mycorrhizal colonization of roots, plant tissue N, and soil P concentration, and soil inorganic N. Additional analyses found no detectable relationship between the amount of biochar added and aboveground productivity. Our results provide the first quantitative review of the effects of biochar on multiple ecosystem functions and the central tendencies suggest that biochar holds promise in being a win-win-win solution to energy, carbon storage, and ecosystem function. However, biochar's impacts on a fourth component, the downstream nontarget environments, remain unknown and present a critical research gap.

1,245 citations


Journal ArticleDOI
TL;DR: Adaptations of the type II CRISPR/Cas system leading to successful expression of the Cas9/sgRNA system in model plant and crop species bodes well for its near-term use as a facile and powerful means of plant genetic engineering for scientific and agricultural applications.
Abstract: The type II CRISPR/Cas system from Streptococcus pyogenes and its simplified derivative, the Cas9/single guide RNA (sgRNA) system, have emerged as potent new tools for targeted gene knockout in bacteria, yeast, fruit fly, zebrafish and human cells. Here, we describe adaptations of these systems leading to successful expression of the Cas9/sgRNA system in two dicot plant species, Arabidopsis and tobacco, and two monocot crop species, rice and sorghum. Agrobacterium tumefaciens was used for delivery of genes encoding Cas9, sgRNA and a non-fuctional, mutant green fluorescence protein (GFP) to Arabidopsis and tobacco. The mutant GFP gene contained target sites in its 5' coding regions that were successfully cleaved by a CAS9/sgRNA complex that, along with error-prone DNA repair, resulted in creation of functional GFP genes. DNA sequencing confirmed Cas9/sgRNA-mediated mutagenesis at the target site. Rice protoplast cells transformed with Cas9/sgRNA constructs targeting the promoter region of the bacterial blight susceptibility genes, OsSWEET14 and OsSWEET11, were confirmed by DNA sequencing to contain mutated DNA sequences at the target sites. Successful demonstration of the Cas9/sgRNA system in model plant and crop species bodes well for its near-term use as a facile and powerful means of plant genetic engineering for scientific and agricultural applications.

1,091 citations


Journal ArticleDOI
TL;DR: This work reports the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes, and identifies targets of both breeding-associated genetic sweeps and breeding- associated balancing selection.
Abstract: Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ~738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea—desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.

1,014 citations


Journal ArticleDOI
TL;DR: The 1st International Workshop on High-Order CFD Methods was successfully held in Nashville, Tennessee, on January 7-8, 2012, just before the 50th Aerospace Sciences Meeting as mentioned in this paper.
Abstract: After several years of planning, the 1st International Workshop on High-Order CFD Methods was successfully held in Nashville, Tennessee, on January 7-8, 2012, just before the 50th Aerospace Sciences Meeting. The American Institute of Aeronautics and Astronautics, the Air Force Office of Scientific Research, and the German Aerospace Center provided much needed support, financial and moral. Over 70 participants from all over the world across the research spectrum of academia, government labs, and private industry attended the workshop. Many exciting results were presented. In this review article, the main motivation and major findings from the workshop are described. Pacing items requiring further effort are presented. © 2013 John Wiley & Sons, Ltd.

838 citations


Journal ArticleDOI
B. S. Acharya1, Marcos Daniel Actis2, T. Aghajani3, G. Agnetta4  +979 moreInstitutions (122)
TL;DR: The Cherenkov Telescope Array (CTA) as discussed by the authors is a very high-energy (VHE) gamma ray observatory with an international collaboration with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America.

701 citations


Journal ArticleDOI
S. Schael1, R. Barate2, R. Brunelière2, D. Buskulic2  +1672 moreInstitutions (143)
TL;DR: In this paper, the results of the four LEP experiments were combined to determine fundamental properties of the W boson and the electroweak theory, including the branching fraction of W and the trilinear gauge-boson self-couplings.

684 citations


Journal ArticleDOI
TL;DR: This analysis identifies key genetic changes linked to the rapid transcontinental dissemination of epidemic C. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system.
Abstract: Epidemic C. difficile (027/BI/NAP1) has rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key events in evolutionary history leading to its emergence and the subsequent patterns of global spread remain unknown. Here, we define the global population structure of C. difficile 027/BI/NAP1 using whole-genome sequencing and phylogenetic analysis. We show that two distinct epidemic lineages, FQR1 and FQR2, not one as previously thought, emerged in North America within a relatively short period after acquiring the same fluoroquinolone resistance-conferring mutation and a highly related conjugative transposon. The two epidemic lineages showed distinct patterns of global spread, and the FQR2 lineage spread more widely, leading to healthcare-associated outbreaks in the UK, continental Europe and Australia. Our analysis identifies key genetic changes linked to the rapid transcontinental dissemination of epidemic C. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system.

633 citations


Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah  +2942 moreInstitutions (201)
TL;DR: In this paper, the spin and parity quantum numbers of the Higgs boson were studied based on the collision data collected by the ATLAS experiment at the LHC, and the results showed that the standard model spin-parity J(...

608 citations


Journal ArticleDOI
J. P. Lees1, V. Poireau1, V. Tisserand1, E. Grauges2  +337 moreInstitutions (73)
TL;DR: The concept for this analysis is to a large degree based on earlier BABAR work and we acknowledge the guidance provided by M. Mazur as discussed by the authors, who consulted with theorists A. Datta, S. Westhoff,S. Fajfer, J. Kamenik, and I. Nisandzic on the calculations of the charged Higgs contributions to the decay rates.
Abstract: The concept for this analysis is to a large degree based on earlier BABAR work and we acknowledge the guidance provided by M. Mazur. The authors consulted with theorists A. Datta, S. Westhoff, S. Fajfer, J. Kamenik, and I. Nisandzic on the calculations of the charged Higgs contributions to the decay rates. We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relied critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economia y Competitividad (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA).

Journal ArticleDOI
TL;DR: Future directions for Behavioral InfoSec research, which is a newer, growing area of research, are highlighted, including separating insider deviant behavior from insider misbehavior, approaches to understanding hackers, improving information security compliance, cross-cultural Behavioral Info Sec research, and data collection and measurement issues.

Journal ArticleDOI
TL;DR: This review describes the Procrustes paradigm and the current methodological toolkit of geometric morphometrics, and highlights some of the theoretical advances that have occurred over the past ten years since the prior review (Adams et al., 2004).
Abstract: Twenty years ago, Rohlf and Marcus proclaimed that a “revolution in morphometrics” was underway, where classic analyses based on sets of linear distances were being supplanted by geometric approaches making use of the coordinates of anatomical landmarks. Since that time the field of geometric morphometrics has matured into a rich and cohesive discipline for the study of shape variation and covariation. The development of the field is identified with the Procrustes paradigm, a methodological approach to shape analysis arising from the intersection of the statistical shape theory and analytical procedures for obtaining shape variables from landmark data. In this review we describe the Procrustes paradigm and the current methodological toolkit of geometric morphometrics. We highlight some of the theoretical advances that have occurred over the past ten years since our prior review (Adams et al., 2004), what types of anatomical structures are amenable to these approaches, and how they extend the reach of geometric morphometrics to more specialized applications for addressing particular biological hypotheses. We end with a discussion of some possible areas that are fertile ground for future development in the field.

Journal ArticleDOI
TL;DR: The nearly simultaneous outbreaks of disease, and high degree of homology between the PEDV strains from the 4 unrelated farms, suggests a common source of virus.
Abstract: During the 10 days commencing April 29, 2013, the Iowa State University Veterinary Diagnostic Laboratory received the first 4 of many submissions from swine farms experiencing explosive epidemics of diarrhea and vomiting affecting all ages, with 90-95% mortality in suckling pigs. Histology revealed severe atrophy of villi in all segments of the small intestines with occasional villus-epithelial syncytial cells, but testing for rotaviruses and Transmissible gastroenteritis virus (Alphacoronavirus 1) were negative. Negative-staining electron microscopy of feces revealed coronavirus-like particles and a pan-coronavirus polymerase chain reaction (PCR) designed to amplify a conserved region of the polymerase gene for all members in the family Coronaviridae produced expected 251-bp amplicons. Subsequent sequencing and analysis revealed 99.6-100% identity among the PCR amplicons from the 4 farms and 97-99% identity to the corresponding portion of the polymerase gene of Porcine epidemic diarrhea virus (PEDV) strains, with the highest identity (99%) to strains from China in 2012. Findings were corroborated at National Veterinary Services Laboratories using 2 nested S-gene and 1 nested N-gene PCR tests where the sequenced amplicons also had the highest identity with 2012 China strains. Whole genome sequence for the virus from 2 farms in 2 different states using next-generation sequencing technique was compared to PEDV sequences available in GenBank. The 2013 U.S. PEDV had 96.6-99.5% identity with all known PEDV strains and the highest identity (>99.0%) to some of the 2011-2012 Chinese strains. The nearly simultaneous outbreaks of disease, and high degree of homology (99.6-100%) between the PEDV strains from the 4 unrelated farms, suggests a common source of virus.

Journal ArticleDOI
04 Apr 2013-Nature
TL;DR: An analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma offers insights into the evolution of parasitism and identifies new potential drug targets.
Abstract: Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.

Journal ArticleDOI
TL;DR: In this article, the authors assess the progress, opportunities, and challenges in this emerging field, which consists of a geochemical reaction regulated by subsurface microbiology, including mineral precipitation, gas generation, biofilm formation and biopolymer generation.
Abstract: Consideration of soil as a living ecosystem offers the potential for innovative and sustainable solutions to geotechnical problems. This is a new paradigm for many in geotechnical engineering. Realising the potential of this paradigm requires a multidisciplinary approach that embraces biology and geochemistry to develop techniques for beneficial ground modification. This paper assesses the progress, opportunities, and challenges in this emerging field. Biomediated geochemical processes, which consist of a geochemical reaction regulated by subsurface microbiology, currently being explored include mineral precipitation, gas generation, biofilm formation and biopolymer generation. For each of these processes, subsurface microbial processes are employed to create an environment conducive to the desired geochemical reactions among the minerals, organic matter, pore fluids, and gases that constitute soil. Geotechnical applications currently being explored include cementation of sands to enhance bearing capacity and liquefaction resistance, sequestration of carbon, soil erosion control, groundwater flow control, and remediation of soil and groundwater impacted by metals and radionuclides. Challenges in biomediated ground modification include upscaling processes from the laboratory to the field, in situ monitoring of reactions, reaction products and properties, developing integrated biogeochemical and geotechnical models, management of treatment by-products, establishing the durability and longevity/reversibility of the process, and education of engineers and researchers.

Journal ArticleDOI
TL;DR: This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistantStarches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity.

Journal ArticleDOI
TL;DR: The concept of tortuosity is used to characterize the structure of porous media, to estimate their electrical and hydraulic conductivity, and to study the travel time and length for tracer dispersion as mentioned in this paper.
Abstract: The concept of tortuosity is used to characterize the structure of porous media, to estimate their electrical and hydraulic conductivity, and to study the travel time and length for tracer dispersion, but different types of tortuosity—geometric, hydraulic, electrical, and diffusive—have been used essentially interchangeably in the literature. Here, we critically review the tortuosity models developed empirically, analytically, and numerically for flow in both saturated and unsaturated porous media. We emphasize that the proposed tortuosity models are distinct and thus may not be used interchangeably. Given the variety of models that have been developed, and the sharp differences between some of them, no consensus has emerged unifying the models in a coherent way. Related treatments of tortuosity are found in the literature on porous catalysts. In such materials, nonlinear reactions ordinarily accompany transport, and the effective diffusivity within the pore space in the presence of the reactions is distinct from the one in their absence. Thus, because tortuosity may be defined as the ratio of the effective diffusivities in the bulk material and within the pore space, a careful treatment of tortuosity may need to distinguish between transport with and without reactions. This complication is ultimately relevant to soils as well, because bioremediation and biodegradation in soils are always accompanied by nonlinear reactions. Common models of tortuosity include both logarithmic functions and power laws. In many cases, the differences between the logarithmic and power-law phenomenologies are not great, but power laws can usually be reconciled with percolation concepts. Invoking percolation theory provides both insight into the origin of the power functions and a framework for understanding differences between tortuosity models.

Journal ArticleDOI
TL;DR: The observations indicate that heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independent of nutrient intake or energy balance, and markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake.
Abstract: Environmental-induced hyperthermia compromises efficient animal production and jeopardizes animal welfare. Reduced productive output during heat stress was traditionally thought to result from decreased nutrient intake. Our observations challenge this dogma and indicate that heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independent of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident through changes such as basal and stimulated circulating insulin levels. Hepatocyte and myocyte metabolism also show clear differences in glucose production and use during heat stress. Perhaps most intriguing, given the energetic shortfall of the heat-stressed animal, is the apparent lack of fat mobilization from adipose tissue coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues.

Journal ArticleDOI
TL;DR: In this paper, a non-perturbative ab initio no core shell model (NCSM) was proposed to solve the properties of nuclei exactly for arbitrary nucleon-nucleon (N N ) and N N + ǫ − three-N n interactions with exact preservation of all symmetries.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2942 moreInstitutions (200)
TL;DR: In this article, the production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs were measured using the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of about 25/fb.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2897 moreInstitutions (184)
TL;DR: In this article, the luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented, and a luminosity uncertainty of delta L/L = +/- 3.5 % is obtained.
Abstract: The luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at root s = 7 TeV. A luminosity uncertainty of delta L/L = +/- 3.5 % is obtained for the 47 pb(-1) of data delivered to ATLAS in 2010, and an uncertainty of delta L/L = +/- 1.8 % is obtained for the 5.5 fb(-1) delivered in 2011.

Journal ArticleDOI
TL;DR: A new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA, finding trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time.
Abstract: Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world. The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs, only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic distances shows population stratification, including a small number of large clusters centered on key lines. Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the particular group of germplasm and region of the genome. The utility of these data for performing genome-wide association studies was tested with two simply inherited traits and one complex trait. We identified trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time; however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits. The genotypic information described here allows this publicly available panel to be exploited by researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic diversity.

Journal ArticleDOI
TL;DR: In this article, a review of the technologies for removing contaminants from raw syngas is presented, which are classified according to the gas temperature exiting the cleanup device: hot, cold, and warm.
Abstract: Syngas from gasification of carbonaceous feedstocks is used for power production and synthesis of fuels and commodity chemicals. Impurities in gasification feedstocks, especially sulfur, nitrogen, chlorine, and ash, often find their way into syngas and can interfere with downstream applications. Incomplete gasification can also produce undesirable products in the raw syngas in the form of tar and particulate char. This paper reviews the technologies for removing contaminants from raw syngas. These technologies are classified according to the gas temperature exiting the cleanup device: hot (T > 300 °C), cold (T < ∼100 °C), and warm gas cleaning regimes. Cold gas cleanup uses relatively mature techniques that are highly effective although they often generate waste water streams and may suffer from energy inefficiencies. The majority of these techniques are based on using wet scrubbers. Hot gas cleaning technologies are attractive because they avoid cooling and reheating the gas stream. Many of these are still under development given the technical difficulties caused by extreme environments. Warm gas cleaning technologies include traditional particulate removal devices along with new approaches for removing tar and chlorine.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2912 moreInstitutions (183)
TL;DR: Two-particle correlations in relative azimuthal angle and pseudorapidity are measured using the ATLAS detector at the LHC and the resultant Δø correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δø modulation for all ΣE(T)(Pb) ranges and particle p(T).
Abstract: Two-particle correlations in relative azimuthal angle (Delta phi) and pseudorapidity (Delta eta) are measured in root S-NN = 5.02 TeV p + Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 mu b(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (Sigma E-T(Pb)) summed over 3.1 < eta < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < vertical bar Delta eta vertical bar < 5) "near-side" (Delta phi similar to 0) correlation that grows rapidly with increasing Sigma E-T(Pb). A long-range "away-side" (Delta phi similar to pi) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Sigma E-T(Pb), is found to match the near-side correlation in magnitude, shape (in Delta eta and Delta phi) and Sigma E-T(Pb) dependence. The resultant Delta phi correlation is approximately symmetric about pi/2, and is consistent with a dominant cos2 Delta phi modulation for all Sigma E-T(Pb) ranges and particle p(T).

Journal ArticleDOI
01 Nov 2013-Mbio
TL;DR: The finding that the emergent U.S. PEDV strains share unique genetic features at the 5′-untranslated region with a bat coronavirus provided further support of the evolutionary origin of P EDV from bats and potential cross-species transmission.
Abstract: Coronaviruses are known to infect humans and other animals and cause respiratory and gastrointestinal diseases. Here we report the emergence of porcine epidemic diarrhea virus (PEDV) in the United States and determination of its origin, evolution, and genotypes based on temporal and geographical evidence. Histological lesions in small intestine sections of affected pigs and the complete genomic sequences of three emergent strains of PEDV isolated from outbreaks in Minnesota and Iowa were characterized. Genetic and phylogenetic analyses of the three U.S. strains revealed a close relationship with Chinese PEDV strains and their likely Chinese origin. The U.S. PEDV strains underwent evolutionary divergence, which can be classified into two sublineages. The three emergent U.S. strains are most closely related to a strain isolated in 2012 from Anhui Province in China, which might be the result of multiple recombination events between different genetic lineages or sublineages of PEDV. Molecular clock analysis of the divergent time based on the complete genomic sequences is consistent with the actual time difference, approximately 2 to 3 years, of the PED outbreaks between China (December 2010) and the United States (May 2013). The finding that the emergent U.S. PEDV strains share unique genetic features at the 5′-untranslated region with a bat coronavirus provided further support of the evolutionary origin of PEDV from bats and potential cross-species transmission. The data from this study have important implications for understanding the ongoing PEDV outbreaks in the United States and will guide future efforts to develop effective preventive and control measures against PEDV. IMPORTANCE The sudden emergence of porcine epidemic diarrhea virus (PEDV), a coronavirus, for the first time in the United States causes significant economic and public health concerns. Since its recognition in May 2013, PEDV has rapidly spread across the United States, resulting in high mortality in piglets in more than 17 States now. The ongoing outbreaks of Middle East respiratory syndrome coronavirus in humans from countries in or near the Arabian Peninsula and the historical deadly nature of the 2002 outbreaks of severe acute respiratory syndrome coronavirus create further anxiety over the emergence of PEDV in the United States due to the lack of scientific information about the origin and evolution of this emerging coronavirus. Here we report the detailed genetic characterization, origin, and evolution of emergent PEDV strains in the United States. The results provide much needed information to devise effective preventive and control strategies against PEDV in the United States.

Journal ArticleDOI
TL;DR: The involvement of oxidized proteins to the development of biological diseases has been studied for a few decades, but the effects and the mechanisms of protein oxidation in food systems are largely unknown.
Abstract: The involvement of oxidized proteins to the development of biological diseases has been studied for a few decades, but the effects and the mechanisms of protein oxidation in food systems are largely unknown. Protein oxidation is defined as the covalent modification of a protein induced either by the direct reactions with reactive oxygen species (ROS) or indirect reactions with secondary by-products of oxidative stress. ROS can cause oxidation in both amino acid side chains and protein backbones, resulting in protein fragmentation or protein-protein cross-linkages. Although all amino acids can be modified by ROS, cysteine, and methionine that are the most susceptible to oxidative changes due to high reaction susceptibility of the sulfur group in those amino acids. Oxidative modifications of proteins can change their physical and chemical properties, including conformation, structure, solubility, susceptibility to proteolysis, and enzyme activities. These modifications can be involved in the regulation of fresh meat quality and influence the processing properties of meat products. Oxidative stress occurs when the formation of oxidants exceeds the ability of antioxidant systems to remove the ROS in organisms. Increased levels of protein oxidation have been associated with various biological consequences, including diseases and aging, in humans and other animal species. The basic principles and products of protein oxidation and the implications of protein oxidation in food systems, especially in meat, are discussed in this review.

Journal ArticleDOI
TL;DR: In this article, the authors characterized pool boiling on surfaces with wettabilities varied from superhydrophobic to super-hydrophilic, and provided nucleation measurements, and developed an analytical model that describes how biphilic surfaces effectively manage the vapor and liquid transport, delaying critical heat flux and maximizing the heat transfer coefficient.

Journal ArticleDOI
TL;DR: This article developed a replication recipe to facilitate close and convincing replication attempts, outlining standard criteria for a convincing close replication, including faithfully recreating the original study while keeping track of differences, achieving high statistical power, checking the study's assumptions in new contexts, and pre-registering the study.
Abstract: Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is not a consensus about what constitutes a convincing replication study. To facilitate close and convincing replication attempts we have developed a Replication Recipe, outlining standard criteria for a convincing close replication. This includes faithfully recreating the original study while keeping track of differences, achieving high statistical power, checking the study’s assumptions in new contexts, and pre-registering the study. We also discuss methods for evaluating and reporting replications. Identifying differences between replication and original (sample, culture, lab context, etc.) allows researchers to identify where their replication is on the continuum from “close” to “conceptual”. Our replication recipe can be used by established researchers, teachers, and students to conduct meaningful replication studies and integrate replications into their scholarly habits.

Journal ArticleDOI
TL;DR: In this article, hardwood fast pyrolysis biochar was mixed with soil (0, 3, and 6% w/w) and placed into columns in either the bottom 11.4 cm or the top 11 4 cm to simulate deep banding in rows (DBR) and uniform topsoil mixing (UTM) applications, respectively.
Abstract: Increasing the water-holding capacity of sandy soils will help improve efficiency of water use in agricultural production, and may be critical for providing enough energy and food for an increasing global population. We hypothesized that addition of biochar will increase the water-holding capacity of a sandy loam soil, and that the depth of biochar incorporation will influence the rate of biochar surface oxidation in the amended soils. Hardwood fast pyrolysis biochar was mixed with soil (0%, 3%, and 6% w/w) and placed into columns in either the bottom 11.4 cm or the top 11.4 cm to simulate deep banding in rows (DBR) and uniform topsoil mixing (UTM) applications, respectively. Four sets of 18 columns were incubated at 30 °C and 80% RH. Every 7 days, 150 mL of 0.001 M calcium chloride solution was added to the columns to produce leaching. Sets of columns were harvested after 1, 15, 29, and 91 days. Addition of biochar increased the gravity-drained water content 23% relative to the control. Bulk density of the control soils increased with incubation time (from 1.41 to 1.45 g cm−3), whereas bulk density of biochar-treated soils was up to 9% less than the control and remained constant throughout the incubation period. Biochar did not affect the CEC of the soil. The results suggest that biochar added to sandy loam soil increases water-holding capacity and might increase water available for crop use.