scispace - formally typeset
Search or ask a question
Institution

Iowa State University

EducationAmes, Iowa, United States
About: Iowa State University is a education organization based out in Ames, Iowa, United States. It is known for research contribution in the topics: Population & Gene. The organization has 50151 authors who have published 107716 publications receiving 3355909 citations. The organization is also known as: Iowa State University of Science and Technology & Iowa State College.


Papers
More filters
Journal ArticleDOI
01 Oct 2010-Science
TL;DR: This work strongly suppressed the coupling of a single spin in diamond with the surrounding spin bath by using double-axis dynamical decoupling and preserved the coherence was preserved for arbitrary quantum states, as verified by quantum process tomography.
Abstract: Controlling the interaction of a single quantum system with its environment is a fundamental challenge in quantum science and technology. We strongly suppressed the coupling of a single spin in diamond with the surrounding spin bath by using double-axis dynamical decoupling. The coherence was preserved for arbitrary quantum states, as verified by quantum process tomography. The resulting coherence time enhancement followed a general scaling with the number of decoupling pulses. No limit was observed for the decoupling action up to 136 pulses, for which the coherence time was enhanced more than 25 times compared to that obtained with spin echo. These results uncover a new regime for experimental quantum science and allow us to overcome a major hurdle for implementing quantum information protocols.

657 citations

Journal ArticleDOI
TL;DR: A Deep Convolutional Neural Network trained on the ‘big data’ ImageNet database is employed to automatically detect cracks in Hot-Mix Asphalt and Portland Cement Concrete surfaced pavement images that also include a variety of non-crack anomalies and defects.

655 citations

Journal ArticleDOI
Wesley C. Warren1, LaDeana W. Hillier1, Jennifer A. Marshall Graves2, Ewan Birney, Chris P. Ponting3, Frank Grützner4, Katherine Belov5, Webb Miller6, Laura Clarke7, Asif T. Chinwalla1, Shiaw Pyng Yang1, Andreas Heger3, Devin P. Locke1, Pat Miethke2, Paul D. Waters2, Frédéric Veyrunes8, Frédéric Veyrunes2, Lucinda Fulton1, Bob Fulton1, Tina Graves1, John W. Wallis1, Xose S. Puente9, Carlos López-Otín9, Gonzalo R. Ordóñez9, Evan E. Eichler10, Lin Chen10, Ze Cheng10, Janine E. Deakin2, Amber E. Alsop2, Katherine Thompson2, Patrick J. Kirby2, Anthony T. Papenfuss11, Matthew Wakefield11, Tsviya Olender12, Doron Lancet12, Gavin A. Huttley2, Arian F.A. Smit13, Andrew J Pask14, Peter Temple-Smith14, Peter Temple-Smith15, Mark A. Batzer16, Jerilyn A. Walker16, Miriam K. Konkel16, Robert S. Harris6, Camilla M. Whittington5, Emily S. W. Wong5, Neil J. Gemmell17, Emmanuel Buschiazzo17, Iris M. Vargas Jentzsch17, Angelika Merkel17, Juergen Schmitz18, Anja Zemann18, Gennady Churakov18, Jan Ole Kriegs18, Juergen Brosius18, Elizabeth P. Murchison19, Ravi Sachidanandam19, Carly Smith19, Gregory J. Hannon19, Enkhjargal Tsend-Ayush4, Daniel McMillan2, Rosalind Attenborough2, Willem Rens8, Malcolm A. Ferguson-Smith8, Christophe Lefevre20, Christophe Lefevre14, Julie A. Sharp14, Kevin R. Nicholas14, David A. Ray21, Michael Kube, Richard Reinhardt, Thomas H. Pringle, James Taylor22, Russell C. Jones, Brett Nixon, Jean Louis Dacheux23, Hitoshi Niwa, Yoko Sekita, Xiaoqiu Huang24, Alexander Stark25, Pouya Kheradpour25, Manolis Kellis25, Paul Flicek, Yuan Chen, Caleb Webber3, Ross C. Hardison, Joanne O. Nelson1, Kym Hallsworth-Pepin1, Kim D. Delehaunty1, Chris Markovic1, Patrick Minx1, Yucheng Feng1, Colin Kremitzki1, Makedonka Mitreva1, Jarret Glasscock1, Todd Wylie1, Patricia Wohldmann1, Prathapan Thiru1, Michael N. Nhan1, Craig Pohl1, Scott M. Smith1, Shunfeng Hou1, Marilyn B. Renfree14, Elaine R. Mardis1, Richard K. Wilson1 
08 May 2008-Nature
TL;DR: It is found that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypUS biology.
Abstract: We present a draft genome sequence of the platypus, Ornithorhynchus anatinus This monotreme exhibits a fascinating combination of reptilian and mammalian characters For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles Analysis of the first monotreme genome aligned these features with genetic innovations We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation

653 citations

Journal ArticleDOI
TL;DR: The aim of this survey is to enable researchers and system designers to get insights into the working and applications of CPSs and motivate them to propose novel solutions for making wide-scale adoption of CPS a tangible reality.
Abstract: Cyberphysical systems (CPSs) are new class of engineered systems that offer close interaction between cyber and physical components. The field of CPS has been identified as a key area of research, and CPSs are expected to play a major role in the design and development of future systems. In this paper, we survey recent advancements made in the development and applications of CPSs. We classify the existing research work based on their characteristics and identify the future challenges. We also discuss the examples of prototypes of CPSs. The aim of this survey is to enable researchers and system designers to get insights into the working and applications of CPSs and motivate them to propose novel solutions for making wide-scale adoption of CPS a tangible reality.

653 citations

Journal ArticleDOI
TL;DR: The current state of knowledge of the phylogeny, environmental distribution, and potential applications of methanotrophs for regional and global issues are summarized, as well as the role of Cu in regulating gene expression and proteome in these cells, its effects on enzymatic and whole-cell activity, and the novel Cu uptake system used by methanOTrophs are summarized.
Abstract: Methanotrophs, cells that consume methane (CH4) as their sole source of carbon and energy, play key roles in the global carbon cycle, including controlling anthropogenic and natural emissions of CH4, the second-most important greenhouse gas after carbon dioxide. These cells have also been widely used for bioremediation of chlorinated solvents, and help sustain diverse microbial communities as well as higher organisms through the conversion of CH4 to complex organic compounds (e.g. in deep ocean and subterranean environments with substantial CH4 fluxes). It has been well-known for over 30 years that copper (Cu) plays a key role in the physiology and activity of methanotrophs, but it is only recently that we have begun to understand how these cells collect Cu, the role Cu plays in CH4 oxidation by the particulate CH4 monooxygenase, the effect of Cu on the proteome, and how Cu affects the ability of methanotrophs to oxidize different substrates. Here we summarize the current state of knowledge of the phylogeny, environmental distribution, and potential applications of methanotrophs for regional and global issues, as well as the role of Cu in regulating gene expression and proteome in these cells, its effects on enzymatic and whole-cell activity, and the novel Cu uptake system used by methanotrophs.

653 citations


Authors

Showing all 50392 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Yang Gao1682047146301
Steven N. Blair165879132929
Carlos Bustamante161770106053
Darien Wood1602174136596
Pete Smith1562464138819
Richard J. Davidson15660291414
Mark Raymond Adams1471187135038
H. A. Neal1411903115480
Mitchell Wayne1391810108776
Frank Filthaut1351684103590
Tiziano Rovelli135144190518
Francesco Navarria135153591427
Francesca Romana Cavallo135157192392
Yasar Onel134142492200
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

Cornell University
235.5K papers, 12.2M citations

93% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202378
2022550
20213,570
20203,803
20193,787
20183,741