scispace - formally typeset
Search or ask a question
Institution

Malaghan Institute of Medical Research

HealthcareWellington, New Zealand
About: Malaghan Institute of Medical Research is a healthcare organization based out in Wellington, New Zealand. It is known for research contribution in the topics: Immune system & T cell. The organization has 411 authors who have published 644 publications receiving 29535 citations.
Topics: Immune system, T cell, Antigen, Cytotoxic T cell, CD8


Papers
More filters
Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Book ChapterDOI
01 Jan 2005
TL;DR: Second generation tetrazolium dyes that form water-soluble formazans and require an intermediate electron acceptor for reduction (XTT, WST-1 and to some extent, MTS), are characterised by a net negative charge and are therefore largely cell-impermeable and considerable evidence indicates that their reduction occurs at the cell surface or at the level of the plasma membrane via trans-plasma membrane electron transport.
Abstract: Tetrazolium salts have become some of the most widely used tools in cell biology for measuring the metabolic activity of cells ranging from mammalian to microbial origin. With mammalian cells, fractionation studies indicate that the reduced pyridine nucleotide cofactor, NADH, is responsible for most MTT reduction and this is supported by studies with whole cells. MTT reduction is associated not only with mitochondria, but also with the cytoplasm and with non-mitochondrial membranes including the endosome/lysosome compartment and the plasma membrane. The net positive charge on tetrazolium salts like MTT and NBT appears to be the predominant factor involved in their cellular uptake via the plasma membrane potential. However, second generation tetrazolium dyes that form water-soluble formazans and require an intermediate electron acceptor for reduction (XTT, WST-1 and to some extent, MTS), are characterised by a net negative charge and are therefore largely cell-impermeable. Considerable evidence indicates that their reduction occurs at the cell surface, or at the level of the plasma membrane via trans-plasma membrane electron transport. The implications of these new findings are discussed in terms of the use of tetrazolium dyes as indicators of cell metabolism and their applications in cell biology.

1,875 citations

Journal ArticleDOI
TL;DR: Most cellular reduction of MTT occurs extramitochondrially and probably involves the pyridine nucleotide cofactors NADH and NADPH-dependent mechanisms that are insensitive to respiratory chain inhibitors.

1,331 citations

Journal ArticleDOI
TL;DR: Although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
Abstract: The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the “Hellstrom paradox”). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.

836 citations

Journal ArticleDOI
TL;DR: The data suggest that in order for CD4+Foxp3+ T-reg to effectively control autoimmune reactions in the target organ, it may also be necessary to control tissue inflammation.
Abstract: Treatment with ex vivo–generated regulatory T cells (T-reg) has been regarded as a potentially attractive therapeutic approach for autoimmune diseases. However, the dynamics and function of T-reg in autoimmunity are not well understood. Thus, we developed Foxp3gfp knock-in (Foxp3gfp.KI) mice and myelin oligodendrocyte glycoprotein (MOG)35–55/IAb (MHC class II) tetramers to track autoantigen-specific effector T cells (T-eff) and T-reg in vivo during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. MOG tetramer–reactive, Foxp3+ T-reg expanded in the peripheral lymphoid compartment and readily accumulated in the central nervous system (CNS), but did not prevent the onset of disease. Foxp3+ T cells isolated from the CNS were effective in suppressing naive MOG-specific T cells, but failed to control CNS-derived encephalitogenic T-eff that secreted interleukin (IL)-6 and tumor necrosis factor (TNF). Our data suggest that in order for CD4+Foxp3+ T-reg to effectively control autoimmune reactions in the target organ, it may also be necessary to control tissue inflammation.

803 citations


Authors

Showing all 419 results

NameH-indexPapersCitations
Neil Pearce107729105762
John W. Holloway6633116187
Kathy D. McCoy5513116588
Benjamin J. Marsland481209335
Carsten Geisler472217798
Jonathan J. Ewbank461078659
David Ritchie452756853
Nuzhat Ahmed41875591
Patrizia Stoitzner411015087
Gregory T. Jones4115810295
Michael V. Berridge411196853
Nicola L. Harris401108780
Antony W. Braithwaite4011514702
Andreas L. Lopata401776173
Brent R. Copp381569195
Network Information
Related Institutions (5)
German Cancer Research Center
26.3K papers, 1.4M citations

88% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

87% related

French Institute of Health and Medical Research
174.2K papers, 8.3M citations

87% related

Anschutz Medical Campus
28.1K papers, 1.4M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202218
202138
202054
201932
201830