scispace - formally typeset
Search or ask a question
Institution

Nanjing University of Information Science and Technology

EducationNanjing, China
About: Nanjing University of Information Science and Technology is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Precipitation & Aerosol. The organization has 14129 authors who have published 17985 publications receiving 267578 citations. The organization is also known as: Nan Xin Da.


Papers
More filters
Journal ArticleDOI
TL;DR: The relationship between regional PBL meteorology, PM2.5, and haze is discussed in this paper, where an online atmospheric chemical transport model is used to simulate the aerosol optical depth, single scattering albedo (SSA), and asymmetry parameter (ASY).
Abstract: . The urbanized region ofJing(Beijing)-Jin(Tianjin)-Ji (alias of Hebei province) and its nearby surrounding region (3JNS) is becoming China's most polluted area by haze, exceeding even the Yangtze and Pearl river deltas. Aside from pollutant emission, the meteorology of the planetary boundary layer (PBL) is the most important factor affecting haze pollution. Focusing on July 2008, the aerosol optical properties and PBL meteorology features closely related to haze formation were simulated in the 3JNS region using an online atmospheric chemical transport model. The relationship between regional PBL meteorology, PM2.5, and haze is discussed. Model results accurately simulated the aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (ASY), validated by comparison with observations from the MODerate Resolution Imaging Spectroradiometer (MODIS), the China Aerosol Remote Sensing NETwork (CARSNET) and the Aerosol Robotic NETwork (AERONET). Modeled PBL wind speeds showed reasonable agreement with those from the National Centers for Environmental Prediction (NCEP) Reanalysis 2. A monthly mean AOD value as high as 1.2 was found from both model and observations, with a daily mean larger than 2.0 during haze episodes in the 3JNS region. Modeled and observed SSA values of 0.90–0.96 and ASY values of 0.72–0.74 demonstrated the high scattering characteristic of summer aerosols in this region. PBL wind speeds from modeled and NCEP data both showed a reversing trend of PM2.5 variation, illustrating the importance of the "PBL window shadow" in haze formation. Turbulence diffusion and PBL height had opposite phases to surface PM2.5, indicating that lower PBL height and weaker PBL turbulence diffusion are essential to haze formation. It is noted that homogeneous air pressure does not occur at the surface, but at an 850–950 hPa height during the haze episode. The momentum transmitting downward of the cold air from above the PBL to the low PBL and surface lead to an increase in surface wind speeds and haze dispersal.

86 citations

Journal ArticleDOI
TL;DR: In this article, a new approach for retrieving hurricane surface wind vectors utilizing C-band dual-polarization (VV, VH) synthetic aperture radar (SAR) observations is presented.
Abstract: This study presents a new approach for retrieving hurricane surface wind vectors utilizing C-band dual-polarization (VV, VH) synthetic aperture radar (SAR) observations. The copolarized geophysical model function [C-band model 5.N (CMOD5.N)] and a new cross-polarized wind speed retrieval model for dual polarization [C-band cross-polarized ocean surface wind retrieval model for dual-polarization SAR (C-2POD)] are employed to construct a cost function. Minimization of the cost function allows optimum estimates for the wind speeds and directions. The wind direction ambiguities are removed using a parametric two-dimensional sea surface inflow angle model. To evaluate the accuracy of the proposed method, two RADARSAT-2 SAR images of Hurricanes Bill and Bertha are analyzed. The retrieved wind speeds and directions are compared with collocated Quick Scatterometer (QuikSCAT) winds, showing good consistency. Results suggest that the proposed method has good potential to retrieve hurricane surface wind vect...

86 citations

Journal ArticleDOI
TL;DR: In this article, the authors applied the predictable mode analysis approach to explore the predictability and prediction of the SEA peak summer rainfall during 1979-2013, and established a set of physics-based empirical (P-E) models for predicting the first four leading principal components.
Abstract: The interannual variation of East Asia summer monsoon (EASM) rainfall exhibits considerable differences between early summer [May–June (MJ)] and peak summer [July–August (JA)]. The present study focuses on peak summer. During JA, the mean ridge line of the western Pacific subtropical High (WPSH) divides EASM domain into two sub-domains: the tropical EA (5°N–26.5°N) and subtropical-extratropical EA (26.5°N–50°N). Since the major variability patterns in the two sub-domains and their origins are substantially different, the Part I of this study concentrates on the tropical EA or Southeast Asia (SEA). We apply the predictable mode analysis approach to explore the predictability and prediction of the SEA peak summer rainfall. Four principal modes of interannual rainfall variability during 1979–2013 are identified by EOF analysis: (1) the WPSH-dipole sea surface temperature (SST) feedback mode in the Northern Indo-western Pacific warm pool associated with the decay of eastern Pacific El Nino/Southern Oscillation (ENSO), (2) the central Pacific-ENSO mode, (3) the Maritime continent SST-Australian High coupled mode, which is sustained by a positive feedback between anomalous Australian high and sea surface temperature anomalies (SSTA) over Indian Ocean, and (4) the ENSO developing mode. Based on understanding of the sources of the predictability for each mode, a set of physics-based empirical (P-E) models is established for prediction of the first four leading principal components (PCs). All predictors are selected from either persistent atmospheric lower boundary anomalies from March to June or the tendency from spring to early summer. We show that these four modes can be predicted reasonably well by the P-E models, thus they are identified as the predictable modes. Using the predicted PCs and the corresponding observed spatial patterns, we have made a 35-year cross-validated hindcast, setting up a bench mark for dynamic models’ predictions. The P-E hindcast prediction skill represented by domain-averaged temporal correlation coefficient is 0.44, which is twice higher than the skill of the current dynamical hindcast, suggesting that the dynamical models have large rooms to improve. The maximum potential attainable prediction skills for the peak summer SEA rainfall is also estimated and discussed by using the PMA. High predictability regions are found over several climatological rainfall centers like Indo-China peninsula, southern coast of China, southeastern SCS, and Philippine Sea.

86 citations

Journal ArticleDOI
TL;DR: Gel/PP-TA-Ag hydrogel possesses great potential in achieving satisfactory efficacy in infected wound healing and is shown to have a better hemostatic effect than commercial gauze in the mice-bleeding model.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the Exp-function method with the aid of Maple is used to obtain generalized soliton solution and periodic solution with some free parameters for the Symmetric Regularized Long Wave (SRLW) equation.

86 citations


Authors

Showing all 14448 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Lei Zhang135224099365
Bin Wang126222674364
Shuicheng Yan12381066192
Zeshui Xu11375248543
Xiaoming Li113193272445
Qiang Yang112111771540
Yan Zhang107241057758
Fei Wang107182453587
Yongfa Zhu10535533765
James C. McWilliams10453547577
Zhi-Hua Zhou10262652850
Tao Li102248360947
Lei Liu98204151163
Jian Feng Ma9730532310
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

City University of Hong Kong
60.1K papers, 1.7M citations

88% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

88% related

Nanjing University
105.5K papers, 2.2M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023173
2022552
20213,001
20202,492
20192,221
20181,822