scispace - formally typeset
Search or ask a question
Institution

Nanjing University of Information Science and Technology

EducationNanjing, China
About: Nanjing University of Information Science and Technology is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Precipitation & Aerosol. The organization has 14129 authors who have published 17985 publications receiving 267578 citations. The organization is also known as: Nan Xin Da.


Papers
More filters
Journal ArticleDOI
TL;DR: The results highlight the strong and highly diverse urbanization effects on local climate cross China and offer limitations on how these certain methods should be used to quantify UHI intensity over large areas.

133 citations

Journal ArticleDOI
TL;DR: The results imply that reduction of SO2 alone is insufficient in mitigating haze occurrence and highlight the necessity of accurate representation of the BC chemical and radiative properties in predicting the formation and assessing the impacts of regional haze.
Abstract: Although regional haze adversely affects human health and possibly counteracts global warming from increasing levels of greenhouse gases, the formation and radiative forcing of regional haze on climate remain uncertain. By combining field measurements, laboratory experiments, and model simulations, we show a remarkable role of black carbon (BC) particles in driving the formation and trend of regional haze. Our analysis of long-term measurements in China indicates declined frequency of heavy haze events along with significantly reduced SO2, but negligibly alleviated haze severity. Also, no improving trend exists for moderate haze events. Our complementary laboratory experiments demonstrate that SO2 oxidation is efficiently catalyzed on BC particles in the presence of NO2 and NH3, even at low SO2 and intermediate relative humidity levels. Inclusion of the BC reaction accounts for about 90-100% and 30-50% of the sulfate production during moderate and heavy haze events, respectively. Calculations using a radiative transfer model and accounting for the sulfate formation on BC yield an invariant radiative forcing of nearly zero W m-2 on the top of the atmosphere throughout haze development, indicating small net climatic cooling/warming but large surface cooling, atmospheric heating, and air stagnation. This BC catalytic chemistry facilitates haze development and explains the observed trends of regional haze in China. Our results imply that reduction of SO2 alone is insufficient in mitigating haze occurrence and highlight the necessity of accurate representation of the BC chemical and radiative properties in predicting the formation and assessing the impacts of regional haze.

133 citations

Journal ArticleDOI
TL;DR: This paper describes a method for constructing self-reproducing systems from a unique class of variable-boostable systems whose coexisting attractors reside in the phase space along a specific coordinate axis and any of which can be selected by choosing an initial condition in its corresponding basin of attraction.
Abstract: Multistability exists in various regimes of dynamical systems and in different combinations, among which there is a special one generated by self-reproduction. In this paper, we describe a method for constructing self-reproducing systems from a unique class of variable-boostable systems whose coexisting attractors reside in the phase space along a specific coordinate axis and any of which can be selected by choosing an initial condition in its corresponding basin of attraction.

133 citations

Journal ArticleDOI
TL;DR: A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China and local residential/transportation and residential/industrial from Heibei are major contributors to spring PPM in Beijing.

133 citations

Journal ArticleDOI
TL;DR: Limiting global warming to 1.5 °C instead of 2 C could reduce areal and population exposures to baseline once-in-20-year rainfall extremes by 25% (18–41%) and 36% (22–46%), respectively, which is more remarkable for more intense extremes.
Abstract: The Paris Agreement set a goal to keep global warming well below 2 °C and pursue efforts to limit it to 1.5 °C. Understanding how 0.5 °C less warming reduces impacts and risks is key for climate policies. Here, we show that both areal and population exposures to dangerous extreme precipitation events (e.g., once in 10- and 20-year events) would increase consistently with warming in the populous global land monsoon regions based on Coupled Model Intercomparison Project Phase 5 multimodel projections. The 0.5 °C less warming would reduce areal and population exposures to once-in-20-year extreme precipitation events by 25% (18–41%) and 36% (22–46%), respectively. The avoided impacts are more remarkable for more intense extremes. Among the monsoon subregions, South Africa is the most impacted, followed by South Asia and East Asia. Our results improve the understanding of future vulnerability to, and risk of, climate extremes, which is paramount for mitigation and adaptation activities for the global monsoon region where nearly two-thirds of the world’s population lives. The populous global land monsoon region has been suffering from extreme precipitation. Here, the authors show that limiting global warming to 1.5 °C instead of 2 °C could reduce areal and population exposures to baseline once-in-20-year rainfall extremes by 25% (18–41%) and 36% (22–46%), respectively.

132 citations


Authors

Showing all 14448 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Lei Zhang135224099365
Bin Wang126222674364
Shuicheng Yan12381066192
Zeshui Xu11375248543
Xiaoming Li113193272445
Qiang Yang112111771540
Yan Zhang107241057758
Fei Wang107182453587
Yongfa Zhu10535533765
James C. McWilliams10453547577
Zhi-Hua Zhou10262652850
Tao Li102248360947
Lei Liu98204151163
Jian Feng Ma9730532310
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

City University of Hong Kong
60.1K papers, 1.7M citations

88% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

88% related

Nanjing University
105.5K papers, 2.2M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023173
2022552
20213,001
20202,492
20192,221
20181,822