scispace - formally typeset
Search or ask a question
Institution

National Institute of Standards and Technology

GovernmentGaithersburg, Maryland, United States
About: National Institute of Standards and Technology is a government organization based out in Gaithersburg, Maryland, United States. It is known for research contribution in the topics: Laser & Scattering. The organization has 26667 authors who have published 60661 publications receiving 2215547 citations. The organization is also known as: National Bureau of Standards & NIST.


Papers
More filters
Journal ArticleDOI
07 Feb 2020-Science
TL;DR: A catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport and achieves CO2 electroreduction on copper in 7 M potassium hydroxide electrolyte with an ethylene partial current density at 45% cathodic energy efficiency.
Abstract: Electrolysis offers an attractive route to upgrade greenhouse gases such as carbon dioxide (CO2) to valuable fuels and feedstocks; however, productivity is often limited by gas diffusion through a liquid electrolyte to the surface of the catalyst. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport. The CIBH comprises a metal and a superfine ionomer layer with hydrophobic and hydrophilic functionalities that extend gas and ion transport from tens of nanometers to the micrometer scale. By applying this design strategy, we achieved CO2 electroreduction on copper in 7 M potassium hydroxide electrolyte (pH ≈ 15) with an ethylene partial current density of 1.3 amperes per square centimeter at 45% cathodic energy efficiency.

659 citations

Journal ArticleDOI
TL;DR: A single trapped 198 Hg + ion was cooled by scattering laser radiation that was tuned to the resolved lower motional sideband of the narrow 2 S 1/2 - 2 D 5/2 transition to indicate that the ion was in the ground state of its confining well approximately 95% of the time.
Abstract: A single trapped $^{198}\mathrm{Hg}^{+}$ ion was cooled by scattering laser radiation that was tuned to the resolved lower motional sideband of the narrow $^{2}S_{\frac{1}{2}}\ensuremath{-}^{2}D_{\frac{5}{2}}$ transition. The different absorption strengths on the upper and lower sidebands after cooling indicated that the ion was in the ground state of its confining well approximately 95% of the time.

656 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the nature and mechanics of damage induced in ceramics by spherical indenters, from the classical studies of Hertz over a century ago to the present day.
Abstract: In this article we review the nature and mechanics of damage induced in ceramics by spherical indenters, from the classical studies of Hertz over a century ago to the present day. Basic descriptions of continuum elastic and elastic-plastic contact stress fields are first given. Two distinct modes of damage are then identified: Hertzian cone cracks, in relatively hard, homogeneous materials, such as glasses, single crystals, fine-grain ceramics (tensile, brittle mode); and diffuse subsurface damage zones, in relatively tough ceramics with heterogeneous microstructures (shear, quasi-plastic mode). Ceramographic evidence is presented for the two damage types in a broad range of materials, illustrating how an effective brittle-ductile transition can be engineered by coarsening and weakening the grain structure. Continuum analyses for cone fracture and quasi plasticity, using Griffith-Irwin fracture mechanics and yield theory, respectively, are surveyed. Recent micromechanical models of the quasi-plastic mode are also considered, in terms of grain-localized shear faults with extensile wing cracks. The effect of contact-induced damage on the ensuing strength properties of both brittle and quasi-plastic ceramics is examined. Whereas cone cracking causes abrupt losses in strength, the effect of quasi-plastic damage is more gradual-so that more heterogeneous ceramics are more damage tolerant. On the other hand, quasi-plastic ceramics are subject to accelerated strength losses in extreme cyclic conditions (contact fatigue), because of coalescence of attendant microcracks, with implications concerning wear resistance and machinability. Extension of Hertzian contact testing to novel layer structures with hard, brittle outer layers and soft, tough underlayers, designed to impart high toughness while preserving wear resistance, is described.

656 citations

Journal ArticleDOI
TL;DR: A group of practitioners and researchers discuss the role of parameter design and Taguchi's methodology for implementing it and the importance of parameter-design principles with well-established statistical techniques.
Abstract: It is more than a decade since Genichi Taguchi's ideas on quality improvement were inrroduced in the United States. His parameter-design approach for reducing variation in products and processes has generated a great deal of interest among both quality practitioners and statisticians. The statistical techniques used by Taguchi to implement parameter design have been the subject of much debate, however, and there has been considerable research aimed at integrating the parameter-design principles with well-established statistical techniques. On the other hand, Taguchi and his colleagues feel that these research efforts by statisticians are misguided and reflect a lack of understanding of the engineering principles underlying Taguchi's methodology. This panel discussion provides a forum for a technical discussion of these diverse views. A group of practitioners and researchers discuss the role of parameter design and Taguchi's methodology for implementing it. The topics covered include the importance of vari...

654 citations

Journal ArticleDOI
TL;DR: An array of 488 Josephson junctions that amplifies and squeezes noise beyond conventional quantum limits is proposed in this article for superconducting qubits and other quantum devices.
Abstract: An array of 488 Josephson junctions that amplifies and squeezes noise beyond conventional quantum limits should prove useful in the study and development of superconducting qubits and other quantum devices.

654 citations


Authors

Showing all 26760 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
John A. Rogers1771341127390
J. N. Butler1722525175561
Yury Gogotsi171956144520
Zhenan Bao169865106571
Gang Chen1673372149819
Michel C. Nussenzweig16551687665
Donald G. Truhlar1651518157965
Tobin J. Marks1591621111604
Jongmin Lee1502257134772
Galen D. Stucky144958101796
Thomas P. Russell141101280055
William D. Travis13760593286
Peter Zoller13473476093
Anthony G. Evans13057665803
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

87% related

Pennsylvania State University
196.8K papers, 8.3M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202327
2022186
20212,001
20202,438
20192,236
20182,414