scispace - formally typeset
Search or ask a question
Institution

National Institute of Standards and Technology

GovernmentGaithersburg, Maryland, United States
About: National Institute of Standards and Technology is a government organization based out in Gaithersburg, Maryland, United States. It is known for research contribution in the topics: Laser & Scattering. The organization has 26667 authors who have published 60661 publications receiving 2215547 citations. The organization is also known as: National Bureau of Standards & NIST.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an equation which relates the various extraordinary heat effects to the inelastic deformability and to the degree of superheating or undercooling was proposed and applied to experimental data.
Abstract: In accordance with experience concerning the behavior of glass at temperatures within its annealing range, an equation is proposed which relates the various extraordinary heat effects to the inelastic deformability and to the degree of superheating or undercooling. By using this equation in connection with the thermal-expansion curves of a glass within its annealing range, certain constants that are related to the coefficient of viscosity and its changes with temperature and the degree of superheating or undercooling have been determined with reasonable results. Such results make it possible to estimate the inelastic deformability of a glass in its various conditions at all annealing temperatures and are therefore valuable in connection with problems that are encountered in the process of annealing glass. The apparent success achieved in applying the proposed equation to experimental data suggests that the concepts underlying this equation are fundamental and must be considered in any theory concerning the constitution of glass or that of any other extremely viscous liquid.

1,274 citations

Journal ArticleDOI
TL;DR: The weight of evidence strongly suggests a link between such damage and the pathogenesis of disease, and the role of 8-OH-dG in disease, although exact roles remain to be elucidated.
Abstract: The generation of reactive oxygen species may be both beneficial to cells, performing a function in inter- and intracellular signalling, and detrimental, modifying cellular biomolecules, accumulation of which has been associated with numerous diseases. Of the molecules subject to oxidative modification, DNA has received the greatest attention, with biomarkers of exposure and effect closest to validation. Despite nearly a quarter of a century of study, and a large number of base- and sugar-derived DNA lesions having been identified, the majority of studies have focussed upon the guanine modification, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-OH-dG). For the most part, the biological significance of other lesions has not, as yet, been investigated. In contrast, the description and characterisation of enzyme systems responsible for repairing oxidative DNA base damage is growing rapidly, being the subject of intense study. However, there remain notable gaps in our knowledge of which repair proteins remove which lesions, plus, as more lesions identified, new processes/substrates need to be determined. There are many reports describing elevated levels of oxidatively modified DNA lesions, in various biological matrices, in a plethora of diseases; however, for the majority of these the association could merely be coincidental, and more detailed studies are required. Nevertheless, even based simply upon reports of studies investigating the potential role of 8-OH-dG in disease, the weight of evidence strongly suggests a link between such damage and the pathogenesis of disease. However, exact roles remain to be elucidated.

1,268 citations

Journal ArticleDOI
TL;DR: An elegant, efficient measurement method that yields the elastic moduli of nanoscale polymer films in a rapid and quantitative manner without the need for expensive equipment or material-specific modelling is introduced.
Abstract: As technology continues towards smaller, thinner and lighter devices, more stringent demands are placed on thin polymer films as diffusion barriers, dielectric coatings, electronic packaging and so on. Therefore, there is a growing need for testing platforms to rapidly determine the mechanical properties of thin polymer films and coatings. We introduce here an elegant, efficient measurement method that yields the elastic moduli of nanoscale polymer films in a rapid and quantitative manner without the need for expensive equipment or material-specific modelling. The technique exploits a buckling instability that occurs in bilayers consisting of a stiff, thin film coated onto a relatively soft, thick substrate. Using the spacing of these highly periodic wrinkles, we calculate the film's elastic modulus by applying well-established buckling mechanics. We successfully apply this new measurement platform to several systems displaying a wide range of thicknessess (nanometre to micrometre) and moduli (MPa to GPa).

1,264 citations

Journal ArticleDOI
TL;DR: A Bell test is reported that closes the most significant of loopholes that provide loopholes for a local realist explanation of quantum mechanics, using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors.
Abstract: Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.

1,262 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Zeeshan Ahmed3, Randol W. Aikin4  +354 moreInstitutions (75)
TL;DR: Strong evidence for dust and no statistically significant evidence for tensor modes is found and various model variations and extensions are probe, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint.
Abstract: We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg2 patch of sky centered on RA 0h, Dec. −57.5deg. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 μK deg in Q and U at 143 GHz). We detect 150×353 cross-correlation in B-modes at high significance. We fit the single- and cross-frequency power spectra at frequencies above 150 GHz to a lensed-ΛCDM model that includes dust and a possible contribution from inflationary gravitational waves (as parameterized by the tensor-to-scalar ratio r). We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r0.05<0.12 at 95% confidence. Marginalizing over dust and r, lensing B-modes are detected at 7.0σ significance.

1,255 citations


Authors

Showing all 26760 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
John A. Rogers1771341127390
J. N. Butler1722525175561
Yury Gogotsi171956144520
Zhenan Bao169865106571
Gang Chen1673372149819
Michel C. Nussenzweig16551687665
Donald G. Truhlar1651518157965
Tobin J. Marks1591621111604
Jongmin Lee1502257134772
Galen D. Stucky144958101796
Thomas P. Russell141101280055
William D. Travis13760593286
Peter Zoller13473476093
Anthony G. Evans13057665803
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

87% related

Pennsylvania State University
196.8K papers, 8.3M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202327
2022186
20212,001
20202,438
20192,236
20182,414