scispace - formally typeset
Search or ask a question
Institution

National Institute of Standards and Technology

GovernmentGaithersburg, Maryland, United States
About: National Institute of Standards and Technology is a government organization based out in Gaithersburg, Maryland, United States. It is known for research contribution in the topics: Laser & Scattering. The organization has 26667 authors who have published 60661 publications receiving 2215547 citations. The organization is also known as: National Bureau of Standards & NIST.


Papers
More filters
Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: This experiment uses an optical lattice of double-well potentials to isolate and manipulate arrays of paired 87Rb atoms, inducing controlled entangling interactions within each pair, and demonstrates the essential component of a neutral atom quantum SWAP gate (which interchanges the state of two qubits), which forms a set of universal gates for quantum computation.
Abstract: Controlled two-particle interaction is a fundamental requirement for quantum computing, and achieving it has long been a goal for research on neutral atom systems. Anderlini et al. have used a system, consisting of arrays of paired ultracold rubidium-87 atoms in an optical lattice of double-well potentials, to induce controlled entangling interactions within each atom pair. Repeated interchange of spin between atoms occupying different vibrational levels occurs with a coherence time of more than ten milliseconds. This demonstrates an essential component of a quantum gate. An optical lattice of double-well potentials is used to isolate and manipulate arrays of paired 87Rb atoms, inducing controlled entangling interactions within each pair. Repeated interchange of spin between atoms occupying different vibrational levels occurs with a coherence time of more than ten milliseconds. This observation demonstrates the essential component of a quantum gate important for quantum computation. Ultracold atoms trapped by light offer robust quantum coherence and controllability, providing an attractive system for quantum information processing and for the simulation of complex problems in condensed matter physics. Many quantum information processing schemes require the manipulation and deterministic entanglement of individual qubits; this would typically be accomplished using controlled, state-dependent, coherent interactions among qubits. Recent experiments have made progress towards this goal by demonstrating entanglement among an ensemble of atoms1 confined in an optical lattice. Until now, however, there has been no demonstration of a key operation: controlled entanglement between atoms in isolated pairs. Here we use an optical lattice of double-well potentials2,3 to isolate and manipulate arrays of paired 87Rb atoms, inducing controlled entangling interactions within each pair. Our experiment realizes proposals to use controlled exchange coupling4 in a system of neutral atoms5. Although 87Rb atoms have nearly state-independent interactions, when we force two atoms into the same physical location, the wavefunction exchange symmetry of these identical bosons leads to state-dependent dynamics. We observe repeated interchange of spin between atoms occupying different vibrational levels, with a coherence time of more than ten milliseconds. This observation demonstrates the essential component of a neutral atom quantum SWAP gate (which interchanges the state of two qubits). Its ‘half-implementation’, the gate, is entangling, and together with single-qubit rotations it forms a set of universal gates for quantum computation4.

379 citations

Journal ArticleDOI
TL;DR: In this article, the problem of predicting stability in interrupted cutting is solved by matching the free response with an approximate solution that is valid white the tool is cutting, which can be used to predict stability for arbitrary times in the cut; the current method is applicable only to a single degree of freedom.
Abstract: Chatter in milling and other interrupted cutting operations occurs at different combinations of speed and depth of cut from chatter in continuous cutting. Prediction of stability in interrupted cutting is complicated by two facts: (1) the equation of motion when cutting is not the same as the equation when the tool is free; (2) no exact analytical solution is known when the tool is in the cut. These problems are overcome by matching the free response with an approximate solution that is valid white the tool is cutting. An approximate solution, not restricted to small times in the cut, is obtained by the application of finite elements in time. The complete, combined solution is cast in the form of a discrete map that relates position and velocity at the beginning and end of each element to the corresponding values one period earlier. The eigenvalues of the linearized map are used to determine stability. This method can be used to predict stability for arbitrary times in the cut; the current method is applicable only to a single degree of freedom. Predictions of stability for a 1-degree of freedom case are confirmed by experiment.

379 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the first ensemble results from the Far Ultraviolet Spectroscopic Explorer survey of molecular hydrogen in lines of sight with AV e1 mag, and find strong correlations between H2 and molecules such as CH, CN, and CO, in general agreement with predictions of chemical models.
Abstract: We report the first ensemble results from the Far Ultraviolet Spectroscopic Explorer survey of molecular hydrogen in lines of sight with AV e1 mag. We have developed techniques for fitting computed profiles to the low-J lines of H2, and thus determining column densities for J ¼ 0 and J ¼ 1, which contain e99% of the total H2. From these column densities and ancillary data we have derived the total H2 column densities, hydrogen molecular fractions, and kinetic temperatures for 23 lines of sight. This is the first significant sample of molecular hydrogen column densities of � 10 21 cm � 2 , measured through UV absorption bands. We have also compiled a set of extinction data for these lines of sight, which sample a wide range of environments. We have searched for correlations of our H2-related quantities with previously published column densities of other molecules and extinction parameters. We find strong correlations between H2 and molecules such as CH, CN, and CO, in general agreement with predictions of chemical models. We also find the expected correlations between hydrogen molecular fraction and various density indicators such as kinetic temperature, CN

379 citations

Journal ArticleDOI
22 Aug 2002-Nature
TL;DR: How unusual composite spin degrees of freedom can emerge from frustrated magnetic interactions in the cubic spinel ZnCr2O4, the long-sought local zero energy modes for the pyrochlore lattice is reported.
Abstract: Frustrated systems are ubiquitous1,2,3, and they are interesting because their behaviour is difficult to predict; frustration can lead to macroscopic degeneracies and qualitatively new states of matter. Magnetic systems offer good examples in the form of spin lattices, where all interactions between spins cannot be simultaneously satisfied4. Here we report how unusual composite spin degrees of freedom can emerge from frustrated magnetic interactions in the cubic spinel ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops, whose directors—the unique direction along which the spins are aligned, parallel or antiparallel—govern all low-temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering; the data show that neutrons scatter from hexagonal spin clusters rather than individual spins. The hexagon directors are, to a first approximation, decoupled from each other, and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.

378 citations

Journal ArticleDOI
TL;DR: This work uses a two-photon dressing field to create an effective vector gauge potential for Bose-Einstein-condensed 87Rb atoms in the F=1 hyperfine ground state, and their measurements agree quantitatively with a simple single-particle model.
Abstract: We use a two-photon dressing field to create an effective vector gauge potential for Bose-Einstein-condensed 87Rb atoms in the F=1 hyperfine ground state. These Raman-dressed states are spin and momentum superpositions, and we adiabatically load the atoms into the lowest energy dressed state. The effective Hamiltonian of these neutral atoms is like that of charged particles in a uniform magnetic vector potential whose magnitude is set by the strength and detuning of the Raman coupling. The spin and momentum decomposition of the dressed states reveals the strength of the effective vector potential, and our measurements agree quantitatively with a simple single-particle model. While the uniform effective vector potential described here corresponds to zero magnetic field, our technique can be extended to nonuniform vector potentials, giving nonzero effective magnetic fields.

378 citations


Authors

Showing all 26760 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
John A. Rogers1771341127390
J. N. Butler1722525175561
Yury Gogotsi171956144520
Zhenan Bao169865106571
Gang Chen1673372149819
Michel C. Nussenzweig16551687665
Donald G. Truhlar1651518157965
Tobin J. Marks1591621111604
Jongmin Lee1502257134772
Galen D. Stucky144958101796
Thomas P. Russell141101280055
William D. Travis13760593286
Peter Zoller13473476093
Anthony G. Evans13057665803
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

87% related

Pennsylvania State University
196.8K papers, 8.3M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202327
2022186
20212,001
20202,438
20192,236
20182,414