scispace - formally typeset
Search or ask a question
Institution

National Institute of Standards and Technology

GovernmentGaithersburg, Maryland, United States
About: National Institute of Standards and Technology is a government organization based out in Gaithersburg, Maryland, United States. It is known for research contribution in the topics: Laser & Scattering. The organization has 26667 authors who have published 60661 publications receiving 2215547 citations. The organization is also known as: National Bureau of Standards & NIST.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, phase diagram data in the Sn-Ag-Cu system were measured and the location of the ternary eutectic involving L, (Sn), Ag3Sn and Cu6Sn5 phases was confirmed to be at a composition of 3.5 wt.% Ag, 0.91 wt% Cu at a temperature of 216.2±0.3°C.
Abstract: Sn-rich alloys in the Sn-Ag-Cu system are being studied for their potential as Pb-free solders. Thus, the location of the ternary eutectic involving L, (Sn), Ag3Sn and Cu6Sn5 phases is of critical interest. Phase diagram data in the Sn-rich corner of the Sn-Ag-Cu system are measured. The ternary eutectic is confirmed to be at a composition of 3.5 wt.% Ag, 0.9 wt.% Cu at a temperature of 217.2±0.2°C (2σ). A thermodynamic calculation of the Sn-rich part of the diagram from the three constituent binary systems and the available ternary data using the CALPHAD method is conducted. The best fit to the experimental data is 3.66 wt.% Ag and 0.91 wt.% Cu at a temperature of 216.3°C. Using the thermodynamic description to obtain the enthalpy- temperature relation, the DTA signal is simulated and used to explain the difficulty of liquidus measurements in these alloys.

530 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of lattice element type and lattice orientation on the fracture pattern was investigated by simulating a shear loading experiment on a concrete plate, and the effect of element resolution on fracture results was also investigated.

529 citations

Journal ArticleDOI
TL;DR: Current-voltage measurements of metal-molecule-metal junctions formed from pi-conjugated thiols exhibit an inflection point on a plot of ln(I/V(2)) vs 1/V, consistent with a change in transport mechanism from direct tunneling to field emission.
Abstract: Current-voltage measurements of metal-molecule-metal junctions formed from pi-conjugated thiols exhibit an inflection point on a plot of ln(I/V(2)) vs 1/V, consistent with a change in transport mechanism from direct tunneling to field emission. The transition voltage was found to scale linearly with the offset in energy between the Au Fermi level and the highest occupied molecular orbital as determined by ultraviolet photoelectron spectroscopy. Asymmetric voltage drops at the two metal-molecule interfaces cause the transition voltage to be dependent on bias polarity.

529 citations

Journal ArticleDOI
TL;DR: It is shown that in situ transmission electron microscopy can be used to study the dynamic lithiation process of single-crystal silicon with atomic resolution and observe a sharp interface between the crystalline silicon and an amorphous Li(x)Si alloy.
Abstract: In lithium-ion batteries, the electrochemical reaction between the electrodes and lithium is a critical process that controls the capacity, cyclability and reliability of the battery. Despite intensive study, the atomistic mechanism of the electrochemical reactions occurring in these solid-state electrodes remains unclear. Here, we show that in situ transmission electron microscopy can be used to study the dynamic lithiation process of single-crystal silicon with atomic resolution. We observe a sharp interface (~1 nm thick) between the crystalline silicon and an amorphous Li(x)Si alloy. The lithiation kinetics are controlled by the migration of the interface, which occurs through a ledge mechanism involving the lateral movement of ledges on the close-packed {111} atomic planes. Such ledge flow processes produce the amorphous Li(x)Si alloy through layer-by-layer peeling of the {111} atomic facets, resulting in the orientation-dependent mobility of the interfaces.

529 citations

Journal ArticleDOI
03 Jan 2014-ACS Nano
TL;DR: In this paper, the temperature-dependent Raman spectra of exfoliated, monolayer molybdenum disulfide (MoS2) in the range of 100-320 K were analyzed.
Abstract: Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100–320 K are reported and analyzed. The linear temperature coefficients of the in-plane E2g1 and the out-of-plane A1g modes for both suspended and substrate-supported monolayer MoS2 are measured. These data, when combined with the first-order coefficients from laser power-dependent studies, enable the thermal conductivity to be extracted. The resulting thermal conductivity κ = (34.5 ± 4) W/mK at room temperature agrees well with the first-principles lattice dynamics simulations. However, this value is significantly lower than that of graphene. The results from this work provide important input for the design of MoS2-based devices where thermal management is critical.

528 citations


Authors

Showing all 26760 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
John A. Rogers1771341127390
J. N. Butler1722525175561
Yury Gogotsi171956144520
Zhenan Bao169865106571
Gang Chen1673372149819
Michel C. Nussenzweig16551687665
Donald G. Truhlar1651518157965
Tobin J. Marks1591621111604
Jongmin Lee1502257134772
Galen D. Stucky144958101796
Thomas P. Russell141101280055
William D. Travis13760593286
Peter Zoller13473476093
Anthony G. Evans13057665803
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

87% related

Pennsylvania State University
196.8K papers, 8.3M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202327
2022186
20212,001
20202,438
20192,236
20182,414