scispace - formally typeset
Search or ask a question
Institution

National Institute of Standards and Technology

GovernmentGaithersburg, Maryland, United States
About: National Institute of Standards and Technology is a government organization based out in Gaithersburg, Maryland, United States. It is known for research contribution in the topics: Laser & Scattering. The organization has 26667 authors who have published 60661 publications receiving 2215547 citations. The organization is also known as: National Bureau of Standards & NIST.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a modified version of the Bethe equation for inelastic electron scattering in matter has been used to estimate IMFPs in the 50-2000 eV range.
Abstract: We report calculations of electron inelastic mean free paths (IMFPs) for 50–2000 eV electrons in a group of 27 elements (C, Mg, Al, Si, Ti, V, Cr, Fe, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Ta, W, Re, Os, Ir, Pt, Au and Bi). This work extends our previous calculations (Surf. Interface Anal. 11, 57 (1988)) for the 200–2000 eV range. Substantial variations were found in the shapes of the IMFP versus energy curves from element to element over the 50–2000 eV range and we attribute these variations to the different inelastic scattering properties of each material. Our calculated IMFPs wee fitted to a modified form of the Bethe equation for inelastic electron scattering in matter; this equation has four parameters. These four parameters could be empirically related to several material parameters for our group of elements (atomic weight, bulk density and number of valence electron per atom). IMFPs and those initially calculated was 13%. The modified Bethe equation and our expressions for the four parameters can therefore be used to estimate IMFPs in other materials. The uncertainties in the algorithm used for our IMFP calculation are difficult to estimate but are believed to be largely systematic. Since the same algorithm has been used for calculating IMFPs, our predictive IMFP formula is considered to be particularly useful for predicting the IMFP dependence on energy in the 50–2000 eV range and the material dependence for a given energy.

1,082 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the application of atomic physics to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics and test the principles of general relativity.
Abstract: Advances in atomic physics, such as cooling and trapping of atoms and molecules and developments in frequency metrology, have added orders of magnitude to the precision of atom-based clocks and sensors. Applications extend beyond atomic physics and this article reviews using these new techniques to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics, and test the principles of general relativity.

1,077 citations

Journal ArticleDOI
TL;DR: A great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard is demonstrated, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in Terms of the microwave frequency that controls the comb spacing.
Abstract: We demonstrate a great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard. An air-silica microstructure optical fiber broadens the frequency comb of a femtosecond laser to span the optical octave from 1064 to 532 nm, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in terms of the microwave frequency that controls the comb spacing. Additional measurements of established optical frequencies at 633 and 778 nm using the same femtosecond comb confirm the accepted uncertainties for these standards.

1,072 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: This demonstration could represent the beginning of an era of chip-scale electronic–photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.
Abstract: An electronic–photonic microprocessor chip manufactured using a conventional microelectronics foundry process is demonstrated; the chip contains 70 million transistors and 850 photonic components and directly uses light to communicate to other chips. The rapid transfer of data between chips in computer systems and data centres has become one of the bottlenecks in modern information processing. One way of increasing speeds is to use optical connections rather than electrical wires and the past decade has seen significant efforts to develop silicon-based nanophotonic approaches to integrate such links within silicon chips, but incompatibility between the manufacturing processes used in electronics and photonics has proved a hindrance. Now Chen Sun et al. describe a 'system on a chip' microprocessor that successfully integrates electronics and photonics yet is produced using standard microelectronic chip fabrication techniques. The resulting microprocessor combines 70 million transistors and 850 photonic components and can communicate optically with the outside world. This result promises a way forward for new fast, low-power computing systems architectures. Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome1,2,3 by using optical communications based on chip-scale electronic–photonic systems4,5,6,7 enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic–photonic chips9,10,11 are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic–photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics12, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors13,14,15,16. This demonstration could represent the beginning of an era of chip-scale electronic–photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

1,058 citations

Journal ArticleDOI
TL;DR: Use of the tritopic bridging ligand 1,3,5-benzenetristetrazolate (BTT3-) enables formation ofDMF, featuring a porous metal-organic framework with a previously unknown cubic topology.
Abstract: Use of the tritopic bridging ligand 1,3,5-benzenetristetrazolate (BTT3-) enables formation of [Mn(DMF)6]3[(Mn4Cl)3(BTT)8(H2O)12]2·42DMF·11H2O·20CH3OH, featuring a porous metal−organic framework with a previously unknown cubic topology. Crystals of the compound remain intact upon desolvation and show a total H2 uptake of 6.9 wt % at 77 K and 90 bar, which at 60 g H2/L provides a storage density 85% of that of liquid hydrogen. The material exhibits a maximum isosteric heat of adsorption of 10.1 kJ/mol, the highest yet observed for a metal−organic framework. Neutron powder diffraction data demonstrate that this is directly related to H2 binding at coordinatively unsaturated Mn2+ centers within the framework.

1,057 citations


Authors

Showing all 26760 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
John A. Rogers1771341127390
J. N. Butler1722525175561
Yury Gogotsi171956144520
Zhenan Bao169865106571
Gang Chen1673372149819
Michel C. Nussenzweig16551687665
Donald G. Truhlar1651518157965
Tobin J. Marks1591621111604
Jongmin Lee1502257134772
Galen D. Stucky144958101796
Thomas P. Russell141101280055
William D. Travis13760593286
Peter Zoller13473476093
Anthony G. Evans13057665803
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

87% related

Pennsylvania State University
196.8K papers, 8.3M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202327
2022186
20212,001
20202,438
20192,236
20182,414