scispace - formally typeset
Search or ask a question
Institution

Novozymes

CompanyCopenhagen, Denmark
About: Novozymes is a company organization based out in Copenhagen, Denmark. It is known for research contribution in the topics: Nucleic acid & Polynucleotide. The organization has 2506 authors who have published 2828 publications receiving 89266 citations. The organization is also known as: Novo Enzymes A/S & Novozymes A/S.


Papers
More filters
Journal ArticleDOI
TL;DR: The aim of the present study was to examine whether DNA and intact genes were present in NovoGro and whether horizontal transfer of DNA isolated from inactivated production strains occurred either in the laboratory or in the fields treated withNovoGro.

24 citations

Patent
14 Oct 1992
TL;DR: In this article, the use of xylanases in the treatment of lignocellulosic pulp was discussed, and a novel xylanase obtainable from strains belonging to the genus Rhodothermus was described.
Abstract: This invention relates to novel enzymes. More specifically, the invention provides novel xylanases obtainable from strains belonging to the genus Rhodothermus. The invention also relates to the use of the xylanases in the treatment of lignocellulosic pulp.

24 citations

Journal ArticleDOI
TL;DR: The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating withRG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro.

24 citations

Journal ArticleDOI
TL;DR: In this article, the authors assess the consequences of using such approaches that disregard the long timescale on which complete removal of atmospheric CO2 occurs, and make an assessment on what are relevant timescales to consider when including the value of temporary carbon storage in carbon footprinting, and illustrate how the use of the 100-year accounting period can cause long-term global warming impacts to be hidden by short-term storage solutions that may not offer real longterm climate change mitigation.
Abstract: Earth faces an urgent need for climate change mitigation, and carbon storage is discussed as an option. Approaches for assessing the benefit of temporary carbon storage in relation to carbon footprinting exist, but many are based on a 100-year accounting period, disregarding impacts after this time. The aim of this paper is to assess the consequences of using such approaches that disregard the long timescale on which complete removal of atmospheric CO2 occurs. Based on these findings, an assessment is made on what are relevant timescales to consider when including the value of temporary carbon storage in carbon footprinting. Implications of using a 100-year accounting period is evaluated via a literature review study of the global carbon cycle, as well as by analysing the crediting approaches that are exemplified by the PAS 2050 scheme for crediting temporary carbon storage. The global carbon cycle shows timescales of thousands of years for the transport of carbon from the atmosphere to pools beyond the near-surface layers of the Earth, from where it will not readily be re-emitted as a response to change in near-surface conditions. Compared to such timescales, the use of the 100-year accounting period appears hard to justify. We illustrate how the use of the 100-year accounting period can cause long-term global warming impacts to be hidden by short-term storage solutions that may not offer real long-term climate change mitigation. Obtaining long-term climatic benefits is considered to require storage of carbon for at least thousand years. However, it has been proposed that there may exist tipping points for the atmospheric CO2 concentration beyond which irreversible climate changes occur. To reduce the risk of passing such tipping points, fast mitigation of the rise in atmospheric greenhouse gas concentration is required and in this perspective, shorter storage times may still provide climatic benefits. Both short- and long-term perspectives should be considered when crediting temporary carbon storage, addressing both acute effects on the climate and the long-term climate change. It is however essential to distinguish between short- and long-term mitigation potential by treating them separately and avoid that short-term mitigation is used to counterbalance long-term climate change impacts from burning of fossil fuels.

24 citations

Patent
09 Sep 2008
TL;DR: In this article, a process for the preparation of a highly pure recombinant albumin solution having a nickel ion content of less than 100 ng per gram of albumin is described, which comprises subjecting a recombinant LP to a series of chromatography, concentration, and diafiltration steps.
Abstract: A process is provided for the preparation of a highly pure recombinant albumin solution having a nickel ion content of less than 100 ng per gram of albumin. The process comprises subjecting a recombinant albumin to a series of chromatography, concentration, and diafiltration steps.

24 citations


Authors

Showing all 2507 results

NameH-indexPapersCitations
Jens Nielsen1491752104005
Gary K. Schoolnik8123327782
Lubbert Dijkhuizen7542421761
Bauke W. Dijkstra7225619487
Michel Vert6933317899
Henning Langberg6024211999
Harinderjit Gill5931912978
John M. Woodley5842013426
Lei Cai5737416689
Anette Müllertz5727410319
Peter J. Punt521548846
Svein Jarle Horn511239511
Martin Hofrichter501587387
Eva Stoger491278367
Luciano Saso453257672
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

85% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

85% related

East China University of Science and Technology
36.4K papers, 763.1K citations

84% related

National Research Council
76K papers, 2.4M citations

84% related

Leibniz Association
35.6K papers, 1M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20229
202181
202070
201998
2018102
2017135