scispace - formally typeset
Search or ask a question
Institution

Novozymes

CompanyCopenhagen, Denmark
About: Novozymes is a company organization based out in Copenhagen, Denmark. It is known for research contribution in the topics: Nucleic acid & Polynucleotide. The organization has 2506 authors who have published 2828 publications receiving 89266 citations. The organization is also known as: Novo Enzymes A/S & Novozymes A/S.


Papers
More filters
Patent
10 Mar 1998
TL;DR: In this paper, a storage-stable liquid formulation consisting of a laccase and at least one polyalcohol was proposed for a personal care application or for bleaching or for textile applications.
Abstract: The present invention relates to a storage-stable liquid formulation comprising a laccase comprising (i) a laccase, (ii) at least one polyalcohol, which formulation has a pH which is more alkaline than the pH optimum of the laccase. It is also an object of the invention to provide a method for improving the storage-stability of liquid formulations comprising a laccase and the use of said liquid formulations for a personal care application or for bleaching or for textile applications such as dyeing of fabrics.

42 citations

Journal ArticleDOI
TL;DR: The obtained results support the hypotheses of a random endocleavage mechanism of BE and the occurrence of interchain branching and the production of starch or dextrins with narrow molecular mass distributions.
Abstract: The gene encoding the branching enzyme (BE) from the thermoalkaliphilic, anaerobic bacterium Anaerobranca gottschalkii was fused with a twin arginine translocation protein secretory-pathway-dependent signal sequence from Escherichia coli and expressed in Staphylococcus carnosus. The secreted BE was purified using hydrophobic interaction and gel filtration chromatography. The monomeric enzyme (72 kDa) shows maximal activity at 50°C and pH 7.0. With amylose the BE displays high transglycosylation and extremely low hydrolytic activity. The conversion of amylose and linear dextrins was analysed by applying high-performance anion exchange chromatography and quantitative size-exclusion chromatography. Amylose (104–4×107 g/mol) was converted to a major extent to products displaying molecular masses of 104–4×105 g/mol, indicating that the enzyme could be applicable for the production of starch or dextrins with narrow molecular mass distributions. The majority of the transferred oligosaccharides, determined after enzymatic hydrolysis of the newly synthesized α-1,6 linkages, ranged between 103 and 104 g/mol, which corresponds to a degree of polymerisation (DP) of 6–60. The minimal donor chain length is DP 16. Furthermore, the obtained results support the hypotheses of a random endocleavage mechanism of BE and the occurrence of interchain branching.

42 citations

Journal ArticleDOI
TL;DR: Comparisons of the reaction rates and the ability of the enzyme’s active site to accommodate xyloglucan and cellulosic substrates indicated that the acceptor site of HvXET can accommodate five glucosyl residues, and molecular modelling supported this conclusion.
Abstract: A family 16 glycoside hydrolase, xyloglucan xyloglucosyl transferase (EC 2.4.1.207), also known as xyloglucan endotransglycosylase (XET), and designated isoenzyme HvXET6, was purified approximately 400-fold from extracts of young barley seedlings. The complete amino acid sequence of HvXET6 was deduced from the nucleotide sequence of a near full-length cDNA, in combination with tryptic peptide mapping. An additional five to six isoforms or post-translationally modified XET enzymes were detected in crude seedling extracts of barley. The HvXET6 isoenzyme was expressed in Pichia pastoris, characterized and compared with the previously purified native HvXET5 isoform. Barley HvXET6 has a similar apparent molecular mass of 33-35 kDa to the previously purified HvXET5 isoenzyme, but the two isoenzymes differ in their isoelectric points, pH optima, kinetic properties and substrate specificities. The HvXET6 isoenzyme catalyses transfer reactions between xyloglucans and soluble cellulosic substrates, using oligo-xyloglucosides as acceptors, but at rates that are significantly different from those observed for HvXET5. No hydrolytic activity could be detected with either isoenzyme. Comparisons of the reaction rates using xyloglucan or hydroxyethyl cellulose as donors and a series of cellodextrins as acceptors indicated that the acceptor site of HvXET can accommodate five glucosyl residues. Molecular modelling supported this conclusion and further confirmed the ability of the enzyme's active site to accommodate xyloglucan and cellulosic substrates. The two HvXETs followed a ping-pong (Bi, Bi) rather than a sequential reaction mechanism.

42 citations

Journal ArticleDOI
01 Sep 2014-Proteins
TL;DR: Cofactory, a method for prediction of enzyme cofactor specificity using only primary amino acid sequence information, is developed, which identifies potential cofactor binding Rossmann folds and predicts the specificity for the cofactors FAD(H2), NAD(H), and NADP(H).
Abstract: Obtaining optimal cofactor balance to drive production is a challenge in metabolically engineered microbial production strains. To facilitate identification of heterologous enzymes with desirable altered cofactor requirements from native content, we have developed Cofactory, a method for prediction of enzyme cofactor specificity using only primary amino acid sequence information. The algorithm identifies potential cofactor binding Rossmann folds and predicts the specificity for the cofactors FAD(H2), NAD(H), and NADP(H). The Rossmann fold sequence search is carried out using hidden Markov models whereas artificial neural networks are used for specificity prediction. Training was carried out using experimental data from protein–cofactor structure complexes. The overall performance was benchmarked against an independent evaluation set obtaining Matthews correlation coefficients of 0.94, 0.79, and 0.65 for FAD(H2), NAD(H), and NADP(H), respectively. The Cofactory method is made publicly available at http://www.cbs.dtu.dk/services/Cofactory. Proteins 2014; 82:1819–1828. © 2014 Wiley Periodicals, Inc.

42 citations

Patent
Erik Kjaer Markussen1
01 Jun 2001
TL;DR: In this article, an enzyme containing granular composition comprising an enzyme core and a protective substantially continuous layer or coating encapsulating the core comprising at least 60% of a water soluble compound, having a molecular weight below 500 grams per mole, a pH below 11 and a constant humidity at 20°C.
Abstract: This invention relates to an enzyme containing granular composition comprising: a) an enzyme containing core and b) a protective substantially continuous layer or coating encapsulating the core comprising at least 60% of a water soluble compound, having a molecular weight below 500 grams per mole, a pH below 11 and a constant humidity at 20° C. of more than 81%. The invention provides an improved stability of enzymes upon storage.

42 citations


Authors

Showing all 2507 results

NameH-indexPapersCitations
Jens Nielsen1491752104005
Gary K. Schoolnik8123327782
Lubbert Dijkhuizen7542421761
Bauke W. Dijkstra7225619487
Michel Vert6933317899
Henning Langberg6024211999
Harinderjit Gill5931912978
John M. Woodley5842013426
Lei Cai5737416689
Anette Müllertz5727410319
Peter J. Punt521548846
Svein Jarle Horn511239511
Martin Hofrichter501587387
Eva Stoger491278367
Luciano Saso453257672
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

85% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

85% related

East China University of Science and Technology
36.4K papers, 763.1K citations

84% related

National Research Council
76K papers, 2.4M citations

84% related

Leibniz Association
35.6K papers, 1M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20229
202181
202070
201998
2018102
2017135