scispace - formally typeset
Search or ask a question

Showing papers by "Regulus Therapeutics published in 2011"


Journal ArticleDOI
30 Jun 2011-Nature
TL;DR: It is shown that the expression of microRNAs 103 and 107 (miR-103/107) is upregulated in obese mice and caveolin-1, a critical regulator of the insulin receptor, is identified as a direct target gene of miR- 103/107, as a new target for the treatment of type 2 diabetes and obesity.
Abstract: Defects in insulin signalling are among the most common and earliest defects that predispose an individual to the development of type 2 diabetes. MicroRNAs have been identified as a new class of regulatory molecules that influence many biological functions, including metabolism. However, the direct regulation of insulin sensitivity by microRNAs in vivo has not been demonstrated. Here we show that the expression of microRNAs 103 and 107 (miR-103/107) is upregulated in obese mice. Silencing of miR-103/107 leads to improved glucose homeostasis and insulin sensitivity. In contrast, gain of miR-103/107 function in either liver or fat is sufficient to induce impaired glucose homeostasis. We identify caveolin-1, a critical regulator of the insulin receptor, as a direct target gene of miR-103/107. We demonstrate that caveolin-1 is upregulated upon miR-103/107 inactivation in adipocytes and that this is concomitant with stabilization of the insulin receptor, enhanced insulin signalling, decreased adipocyte size and enhanced insulin-stimulated glucose uptake. These findings demonstrate the central importance of miR-103/107 to insulin sensitivity and identify a new target for the treatment of type 2 diabetes and obesity.

881 citations


Journal ArticleDOI
TL;DR: Mice lacking miR-146a exhibit exaggerated inflammatory responses, autoimmunity, and increased rate of tumorigenesis.
Abstract: Excessive or inappropriate activation of the immune system can be deleterious to the organism, warranting multiple molecular mechanisms to control and properly terminate immune responses. MicroRNAs (miRNAs), ∼22-nt-long noncoding RNAs, have recently emerged as key posttranscriptional regulators, controlling diverse biological processes, including responses to non-self. In this study, we examine the biological role of miR-146a using genetically engineered mice and show that targeted deletion of this gene, whose expression is strongly up-regulated after immune cell maturation and/or activation, results in several immune defects. Collectively, our findings suggest that miR-146a plays a key role as a molecular brake on inflammation, myeloid cell proliferation, and oncogenic transformation.

805 citations


Journal ArticleDOI
TL;DR: The mutation spectrum for ARID1A differs between molecular subtypes of gastric cancer, and mutation prevalence is negatively associated with mutations in TP53, and alterations were associated with better prognosis in a stage-independent manner.
Abstract: Gastric cancer is a heterogeneous disease with multiple environmental etiologies and alternative pathways of carcinogenesis. Beyond mutations in TP53, alterations in other genes or pathways account for only small subsets of the disease. We performed exome sequencing of 22 gastric cancer samples and identified previously unreported mutated genes and pathway alterations; in particular, we found genes involved in chromatin modification to be commonly mutated. A downstream validation study confirmed frequent inactivating mutations or protein deficiency of ARID1A, which encodes a member of the SWI-SNF chromatin remodeling family, in 83% of gastric cancers with microsatellite instability (MSI), 73% of those with Epstein-Barr virus (EBV) infection and 11% of those that were not infected with EBV and microsatellite stable (MSS). The mutation spectrum for ARID1A differs between molecular subtypes of gastric cancer, and mutation prevalence is negatively associated with mutations in TP53. Clinically, ARID1A alterations were associated with better prognosis in a stage-independent manner. These results reveal the genomic landscape, and highlight the importance of chromatin remodeling, in the molecular taxonomy of gastric cancer.

670 citations


Journal ArticleDOI
20 Oct 2011-Nature
TL;DR: It is shown in African green monkeys that systemic delivery of an anti-miRNA oligonucleotide that targets both miR-33a and miR/b increased hepatic expression of ABCA1 and induced a sustained increase in plasma HDL levels over 12 weeks, establishing a promising therapeutic strategy to raise plasma HDL and lower VLDL triglyceride levels for the treatment of dyslipidaemias that increase cardiovascular disease risk.
Abstract: Cardiovascular disease remains the leading cause of mortality in westernized countries, despite optimum medical therapy to reduce the levels of low-density lipoprotein (LDL)-associated cholesterol. The pursuit of novel therapies to target the residual risk has focused on raising the levels of high-density lipoprotein (HDL)-associated cholesterol in order to exploit its atheroprotective effects. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of lipid metabolism and are thus a new class of target for therapeutic intervention. MicroRNA-33a and microRNA-33b (miR-33a/b) are intronic miRNAs whose encoding regions are embedded in the sterol-response-element-binding protein genes SREBF2 and SREBF1 (refs 3-5), respectively. These miRNAs repress expression of the cholesterol transporter ABCA1, which is a key regulator of HDL biogenesis. Recent studies in mice suggest that antagonizing miR-33a may be an effective strategy for raising plasma HDL levels and providing protection against atherosclerosis; however, extrapolating these findings to humans is complicated by the fact that mice lack miR-33b, which is present only in the SREBF1 gene of medium and large mammals. Here we show in African green monkeys that systemic delivery of an anti-miRNA oligonucleotide that targets both miR-33a and miR-33b increased hepatic expression of ABCA1 and induced a sustained increase in plasma HDL levels over 12 weeks. Notably, miR-33 antagonism in this non-human primate model also increased the expression of miR-33 target genes involved in fatty acid oxidation (CROT, CPT1A, HADHB and PRKAA1) and reduced the expression of genes involved in fatty acid synthesis (SREBF1, FASN, ACLY and ACACA), resulting in a marked suppression of the plasma levels of very-low-density lipoprotein (VLDL)-associated triglycerides, a finding that has not previously been observed in mice. These data establish, in a model that is highly relevant to humans, that pharmacological inhibition of miR-33a and miR-33b is a promising therapeutic strategy to raise plasma HDL and lower VLDL triglyceride levels for the treatment of dyslipidaemias that increase cardiovascular disease risk.

613 citations


Journal ArticleDOI
TL;DR: Genetic ablation of NF-κB p50 suppresses the myeloproliferation, showing that dysregulation of NF -κB is responsible for the myELoproliferative disease.
Abstract: MicroRNA miR-146a has been implicated as a negative feedback regulator of NF-κB activation. Knockout of the miR-146a gene in C57BL/6 mice leads to histologically and immunophenotypically defined myeloid sarcomas and some lymphomas. The sarcomas are transplantable to immunologically compromised hosts, showing that they are true malignancies. The animals also exhibit chronic myeloproliferation in their bone marrow. Spleen and marrow cells show increased transcription of NF-κB–regulated genes and tumors have higher nuclear p65. Genetic ablation of NF-κB p50 suppresses the myeloproliferation, showing that dysregulation of NF-κB is responsible for the myeloproliferative disease.

368 citations


Journal ArticleDOI
28 Jul 2011-Nature
TL;DR: The results show an unexpected causal link between EBI2, an orphan G-protein-coupled receptor controlling B-cell migration, and the known immunological effects of certain oxysterols, thus uncovering a previously unknown role for this class of molecules.
Abstract: The EBI2 receptor (Epstein–Barr virus-induced gene 2, also known as GPR183) was recently shown to be linked to autoimmune disease, and is a critical regulator of the humoral immune response. It is a G-protein-coupled receptor, and its natural ligand has been unknown. Two groups now bring an end to the 'orphan' status of this receptor with identification of specific oxysterols as its natural ligands. The most potent ligand and activator is 7a,25-dihydroxycholesterol, and the EBI2–oxysterol signalling pathway has an important role in the adaptive immune response. EBI2 (also called GPR183) is an orphan G-protein-coupled receptor that is highly expressed in spleen and upregulated upon Epstein–Barr-virus infection1. Recent studies indicated that this receptor controls follicular B-cell migration and T-cell-dependent antibody production2,3,4,5,6. Oxysterols elicit profound effects on immune and inflammatory responses as well as on cholesterol metabolism7,8,9. The biological effects of oxysterols have largely been credited to the activation of nuclear hormone receptors10,11. Here we isolate oxysterols from porcine spleen extracts and show that they are endogenous ligands for EBI2. The most potent ligand and activator is 7α,25-dihydroxycholesterol (OHC), with a dissociation constant of 450 pM for EBI2. In vitro, 7α,25-OHC stimulated the migration of EBI2-expressing mouse B and T cells with half-maximum effective concentration values around 500 pM, but had no effect on EBI2-deficient cells. In vivo, EBI2-deficient B cells or normal B cells desensitized by 7α,25-OHC pre-treatment showed reduced homing to follicular areas of the spleen. Blocking the synthesis of 7α,25-OHC in vivo with clotrimazole, a CYP7B1 inhibitor, reduced the content of 7α,25-OHC in the mouse spleen and promoted the migration of adoptively transferred pre-activated B cells to the T/B boundary (the boundary between the T-zone and B-zone in the spleen follicle), mimicking the phenotype of pre-activated B cells from EBI2-deficient mice. Our results show an unexpected causal link between EBI2, an orphan G-protein-coupled receptor controlling B-cell migration, and the known immunological effects of certain oxysterols, thus uncovering a previously unknown role for this class of molecules.

308 citations


Journal ArticleDOI
TL;DR: The evidence suggests that miR-125b is at least partly responsible for generating the activated nature of macrophages, at least partially by reducing IRF4 levels, and potentiates the functional role of Macrophages in inducing immune responses.
Abstract: MicroRNA (miR)-125b expression is modulated in macrophages in response to stimulatory cues. In this study, we report a functional role of miR-125b in macrophages. We found that miR-125b is enriched in macrophages compared with lymphoid cells and whole immune tissues. Enforced expression of miR-125b drives macrophages to adapt an activated morphology that is accompanied by increased costimulatory factor expression and elevated responsiveness to IFN-y, whereas anti–miR-125b treatment decreases CD80 surface expression. To determine whether these alterations in cell signaling, gene expression, and morphology have functional consequences, we examined the ability of macrophages with enhanced miR-125b expression to present Ags and found that they better stimulate T cell activation than control macrophages. Further indicating increased function, these macrophages were more effective at killing EL4 tumor cells in vitro and in vivo. Moreover, miR-125b repressed IFN regulatory factor 4 (IRF4), and IRF4 knockdown in macrophages mimicked the miR-125b overexpression phenotype. In summary, our evidence suggests that miR-125b is at least partly responsible for generating the activated nature of macrophages, at least partially by reducing IRF4 levels, and potentiates the functional role of macrophages in inducing immune responses.

283 citations


Journal ArticleDOI
TL;DR: It is reported that over-expression of miR-132 andMiR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over- expression of these miRNAs is likely due to increased expression of several E2F target genes.

175 citations


Journal ArticleDOI
24 Mar 2011-Oncogene
TL;DR: The results demonstrate that the use of anti-miR-182 is a promising therapeutic strategy for metastatic melanoma and provide a solid basis for testing similar strategies in human metastatic tumors.
Abstract: Targeting oncogenic microRNAs (miRNAs) is emerging as a promising strategy for cancer therapy. In this study, we provide proof of principle for the safety and efficacy of miRNA targeting against metastatic tumors. We tested the impact of targeting miR-182, a pro-metastatic miRNA frequently overexpressed in melanoma, the in vitro silencing of which represses invasion and induces apoptosis. Specifically, we assessed the effect of anti-miR-182 oligonucleotides synthesized with 2' sugar modifications and a phosphorothioate backbone in a mouse model of melanoma liver metastasis. Luciferase imaging showed that mice treated with anti-miR-182 had a lower burden of liver metastases compared with control. We confirmed that miR-182 levels were effectively downregulated in the tumors of anti-miR-treated mice compared with tumors of control-treated mice, both in the liver and in the spleen. This effect was accompanied by an upregulation of multiple miR-182 direct targets. Transcriptional profiling of tumors treated with anti-miR-182 or with control oligonucleotides revealed an enrichment of genes controlling survival, adhesion and migration modulated in response to anti-miR-182 treatment. These data indicate that in vivo administration of anti-miRs allows for efficient miRNA targeting and concomitant upregulation of miRNA-controlled genes. Our results demonstrate that the use of anti-miR-182 is a promising therapeutic strategy for metastatic melanoma and provide a solid basis for testing similar strategies in human metastatic tumors.

102 citations


Patent
14 Jan 2011
TL;DR: In this article, compositions comprising oligomeric compounds are presented for mimicking the activity of miR-34, and methods for the treatment of cancer are described for different types of cancer.
Abstract: Provided herein are compositions comprising oligomeric compounds. In certain embodiments, the oligomeric compounds are useful as miRNA mimics. The oligomeric compounds may mimic the activity of miR-34. Also provided herein are methods for the treatment of cancer.

42 citations


Journal ArticleDOI
TL;DR: M icroRNAs (miRs) are recently discovered molecules that regulate entire intracellular pathways at a posttranscriptional level through RNA-RNA binding and represent a novel pool of therapeutic targets and biomarkers, including those in tissue fibrosis.

Journal ArticleDOI
TL;DR: Mismatch discrimination experiments revealed that 3'-Me-α-L-LNA possess slightly enhanced discrimination properties for the GU wobble base-pair as compared to related nucleic acid analogs.

Patent
22 Jul 2011
TL;DR: In this article, compositions and methods for modulation of miR-214 for the treatment and prevention of fibrosis and fibroproliferative conditions are presented, where the modulation is based on the modulation of the modulation matrix.
Abstract: Provided herein are compositions and methods for the modulation of miR-214 for the treatment and/or prevention of fibrosis and fibroproliferative conditions.