scispace - formally typeset
Search or ask a question
Institution

Rowett Research Institute

About: Rowett Research Institute is a based out in . It is known for research contribution in the topics: Rumen & Population. The organization has 2986 authors who have published 4459 publications receiving 239472 citations.
Topics: Rumen, Population, Leptin, Amino acid, Adipose tissue


Papers
More filters
Journal ArticleDOI
01 Jun 2010-Bone
TL;DR: Data indicate that Phospho1(-/-) bones are hypomineralized and, consequently, are softer and more flexible, creating an undermineralized yet active bone.

81 citations

Journal ArticleDOI
TL;DR: It is argued that alcoholic myopathy represents a model system in which both the causal agent and the target organ is known and a myopathy involving free-radical mediated pathology to the whole body which may also target skeletal muscle and a reversible myopathy, unlike many hereditary muscle diseases.
Abstract: Alcohol-induced muscle disease (AIMD) is a composite term to describe any muscle pathology (molecular, biochemical, structural or physiological) resulting from either acute or chronic alcohol ingestion or a combination thereof. The chronic form of AIMD is arguably the most prevalent skeletal muscle disorder in the Western Hemisphere affecting more than 2000 subjects per 100,000 population and is thus much more common than hereditary disorders such as Becker or Duchenne muscular dystrophy. Paradoxically, most texts on skeletal myopathies or scientific meetings covering muscle disease have generally ignored chronic alcoholic myopathy. The chronic form of AIMDs affects 40-60% of alcoholics and is more common than other alcohol-induced diseases, for example, cirrhosis (15-20% of chronic alcoholics), peripheral neuropathy (15-20%), intestinal disease (30-50%) or cardiomyopathy (15-35%). In this article, we summarise the pathological features of alcoholic muscle disease, particularly biochemical changes related to protein metabolism and some of the putative underlying mechanisms. However, the intervening steps between the exposure of muscle to ethanol and the initiation of the cascade of responses leading to muscle weakness and loss of muscle bulk remain essentially unknown. We argue that alcoholic myopathy represents: (a) a model system in which both the causal agent and the target organ is known; (b) a myopathy involving free-radical mediated pathology to the whole body which may also target skeletal muscle and (c) a reversible myopathy, unlike many hereditary muscle diseases. A clearer understanding of the mechanisms responsible for alcoholic myopathy is important since some of the underlying pathways may be common to other myopathies.

81 citations

Journal ArticleDOI
TL;DR: These findings indicate that at least two distinct dockerin-binding specificities are involved in the novel organization of plant cell wall-degrading enzymes in this species and suggest that different scaffoldins and perhaps multiple enzyme complexes may exist in R. flavefaciens.
Abstract: The DNA sequence coding for putative cellulosomal scaffolding protein ScaA from the rumen cellulolytic anaerobe Ruminococcus flavefaciens 17 was completed. The mature protein exhibits a calculated molecular mass of 90,198 Da and comprises three cohesin domains, a C-terminal dockerin, and a unique N-terminal X domain of unknown function. A novel feature of ScaA is the absence of an identifiable cellulose-binding module. Nevertheless, native ScaA was detected among proteins that attach to cellulose and appeared as a glycosylated band migrating at around 130 kDa. The ScaA dockerin was previously shown to interact with the cohesin-containing putative surface-anchoring protein ScaB. Here, six of the seven cohesins from ScaB were overexpressed as histidine-tagged products in E. coli; despite their considerable sequence differences, each ScaB cohesin specifically recognized the native 130-kDa ScaA protein. The binding specificities of dockerins found in R. flavefaciens plant cell wall-degrading enzymes were examined next. The dockerin sequences of the enzymes EndA, EndB, XynB, and XynD are all closely related but differ from those of XynE and CesA. A recombinant ScaA cohesin bound selectively to dockerin-containing fragments of EndB, but not to those of XynE or CesA. Furthermore, dockerin-containing EndB and XynB, but not XynE or CesA, constructs bound specifically to native ScaA. XynE- and CesA-derived probes did however bind a number of alternative R. flavefaciens bands, including an ∼110-kDa supernatant protein expressed selectively in cultures grown on xylan. Our findings indicate that in addition to the ScaA dockerin-ScaB cohesin interaction, at least two distinct dockerin-binding specificities are involved in the novel organization of plant cell wall-degrading enzymes in this species and suggest that different scaffoldins and perhaps multiple enzyme complexes may exist in R. flavefaciens.

81 citations

Journal ArticleDOI
01 Nov 2002
TL;DR: It is shown that common patterns of change in body mass following perturbation can be adequately explained by this ‘non-lipostatic’ model, which has some important implications for the interpretations that are placed on the molecular events in the brain, and ultimately in the search for pharmaceutical agents for alleviation of obesity.
Abstract: It is widely believed that body fatness (and hence total body mass) is regulated by a lipostatic feedback system. This system is suggested to involve at least one peripheral signalling compound, which signals to the brain the current size of body fat stores. In the brain the level of the signal is compared with a desirable target level, and food intake and energy expenditure are then regulated to effect changes in the size of body fat stores. There is considerable support for this theory at several different levels of investigation. Patterns of body-mass change in subjects forced into energy imbalance seem to demonstrate homeostasis, and long-term changes in body mass are minor compared with the potential changes that might result from energy imbalance. Molecular studies of signalling compounds have suggested a putative lipostatic signal (leptin) and a complex network of downstream processing events in the brain, polymorphisms of which lead to disruption of body-mass regulation. This network of neuropeptides provides a rich seam of potential pharmaceutical targets for the control of obesity. Despite this consistent explanation for the observed phenomena at several different levels of enquiry, there are alternative explanations. In the present paper we explore the possibility that the existence of lipostatic regulation of body fatness is an illusion generated by the links between body mass and energy expenditure and responses to energy imbalance that are independent of body mass. Using computer-based models of temporal patterns in energy balance we show that common patterns of change in body mass following perturbation can be adequately explained by this ‘non-lipostatic’ model. This model has some important implications for the interpretations that we place on the molecular events in the brain, and ultimately in the search for pharmaceutical agents for alleviation of obesity.

81 citations

Journal ArticleDOI
TL;DR: In rats, concurrent selenium and iodine deficiency produces greater increases in thyroid weight and plasma thyrotrophin than iodine deficiency alone, indicating that a concurrent seenium deficiency could be a major determinant of the severity of iodine deficiency.
Abstract: Selenium deficiency impairs thyroid hormone metabolism by inhibiting the synthesis and activity of the iodothyronine deiodinases, which convert thyroxine (T4) to the more metabolically active 3,3′-5 triiodothyronine (T3). Hepatic type I iodothyronine deiodinase, identified in partially purified cell fractions using affinity labeling with [125I]N-bromoacetyl reverse triiodothyronine, is also labeled with75Se by in vivo treatment of rats with75Se-Na2SeO3. Thus, the type I iodothyronine 5′-deiodinase is a selenoenzyme. In rats, concurrent selenium and iodine deficiency produces greater increases in thyroid weight and plasma thyrotrophin than iodine deficiency alone. These results indicate that a concurrent selenium deficiency could be a major determinant of the severity of iodine deficiency.

81 citations


Authors

Showing all 2986 results

NameH-indexPapersCitations
Sundeep Khosla11554455451
Andrew Collins10068440634
Harry J. Flint9929343712
Alan Crozier9533829741
William M. O'Fallon9518729373
John R. Speakman9566734484
Boris Zhivotovsky9235850297
Michael E. J. Lean9241130939
Nigel W. Bunnett9134831214
John D. Hayes8625733146
Ruth McPherson8530550535
Bernard Portmann8532626442
Olle Ljungqvist8434028386
Michael H. Hastings7822623486
Ronald J. Maughan7836018100
Network Information
Related Institutions (5)
Medical Research Council
19.1K papers, 1.4M citations

86% related

National Institute for Medical Research
13.4K papers, 908.2K citations

86% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

86% related

University of Guelph
50.5K papers, 1.7M citations

83% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20201
20192
20181
20172
20162