scispace - formally typeset
Search or ask a question
Institution

Université de Montréal

EducationMontreal, Quebec, Canada
About: Université de Montréal is a education organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Population & Context (language use). The organization has 45641 authors who have published 100476 publications receiving 4004007 citations. The organization is also known as: University of Montreal & UdeM.


Papers
More filters
Proceedings ArticleDOI
03 Sep 2014
TL;DR: In this paper, a gated recursive convolutional neural network (GRNN) was proposed to learn a grammatical structure of a sentence automatically, which performed well on short sentences without unknown words, but its performance degrades rapidly as the length of the sentence and the number of unknown words increase.
Abstract: Neural machine translation is a relatively new approach to statistical machine translation based purely on neural networks. The neural machine translation models often consist of an encoder and a decoder. The encoder extracts a fixed-length representation from a variable-length input sentence, and the decoder generates a correct translation from this representation. In this paper, we focus on analyzing the properties of the neural machine translation using two models; RNN Encoder‐Decoder and a newly proposed gated recursive convolutional neural network. We show that the neural machine translation performs relatively well on short sentences without unknown words, but its performance degrades rapidly as the length of the sentence and the number of unknown words increase. Furthermore, we find that the proposed gated recursive convolutional network learns a grammatical structure of a sentence automatically.

4,702 citations

Posted Content
TL;DR: This paper quantifies the generality versus specificity of neurons in each layer of a deep convolutional neural network and reports a few surprising results, including that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
Abstract: Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.

4,663 citations

Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: The Phase II HapMap is described, which characterizes over 3.1 million human single nucleotide polymorphisms genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed, and increased differentiation at non-synonymous, compared to synonymous, SNPs is demonstrated.
Abstract: We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.

4,565 citations

Journal ArticleDOI
Theo Vos1, Ryan M Barber1, Brad Bell1, Amelia Bertozzi-Villa1  +686 moreInstitutions (287)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as mentioned in this paper, the authors estimated the quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013.

4,510 citations

Proceedings Article
04 Dec 2006
TL;DR: These experiments confirm the hypothesis that the greedy layer-wise unsupervised training strategy mostly helps the optimization, by initializing weights in a region near a good local minimum, giving rise to internal distributed representations that are high-level abstractions of the input, bringing better generalization.
Abstract: Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multi-layer neural networks have many levels of non-linearities allowing them to compactly represent highly non-linear and highly-varying functions. However, until recently it was not clear how to train such deep networks, since gradient-based optimization starting from random initialization appears to often get stuck in poor solutions. Hinton et al. recently introduced a greedy layer-wise unsupervised learning algorithm for Deep Belief Networks (DBN), a generative model with many layers of hidden causal variables. In the context of the above optimization problem, we study this algorithm empirically and explore variants to better understand its success and extend it to cases where the inputs are continuous or where the structure of the input distribution is not revealing enough about the variable to be predicted in a supervised task. Our experiments also confirm the hypothesis that the greedy layer-wise unsupervised training strategy mostly helps the optimization, by initializing weights in a region near a good local minimum, giving rise to internal distributed representations that are high-level abstractions of the input, bringing better generalization.

4,385 citations


Authors

Showing all 45957 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Alan C. Evans183866134642
Richard H. Friend1691182140032
Anders Björklund16576984268
Charles N. Serhan15872884810
Fernando Rivadeneira14662886582
C. Dallapiccola1361717101947
Michael J. Meaney13660481128
Claude Leroy135117088604
Georges Azuelos134129490690
Phillip Gutierrez133139196205
Danny Miller13351271238
Henry T. Lynch13392586270
Stanley Nattel13277865700
Lucie Gauthier13267964794
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

93% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

92% related

Harvard University
530.3K papers, 38.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023118
2022485
20216,077
20205,753
20195,212
20184,696