scispace - formally typeset
Search or ask a question
Institution

Université de Montréal

EducationMontreal, Quebec, Canada
About: Université de Montréal is a education organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Population & Context (language use). The organization has 45641 authors who have published 100476 publications receiving 4004007 citations. The organization is also known as: University of Montreal & UdeM.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of αvβ3 integrin.
Abstract: Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of alphavbeta3 integrin. Mice lacking uPAR (Plaur-/-) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active beta3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate alphavbeta3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of alphavbeta3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.

505 citations

Journal ArticleDOI
TL;DR: The final section of this review proposes that RMMA during sleep has a role in lubricating the upper alimentary tract and increasing airway patency.
Abstract: Sleep bruxism (SB) is reported by 8% of the adult population and is mainly associated with rhythmic masticatory muscle activity (RMMA) characterized by repetitive jaw muscle contractions (3 bursts or more at a frequency of 1 Hz). The consequences of SB may include tooth destruction, jaw pain, headaches, or the limitation of mandibular movement, as well as tooth-grinding sounds that disrupt the sleep of bed partners. SB is probably an extreme manifestation of a masticatory muscle activity occurring during the sleep of most normal subjects, since RMMA is observed in 60% of normal sleepers in the absence of grinding sounds. The pathophysiology of SB is becoming clearer, and there is an abundance of evidence outlining the neurophysiology and neurochemistry of rhythmic jaw movements (RJM) in relation to chewing, swallowing, and breathing. The sleep literature provides much evidence describing the mechanisms involved in the reduction of muscle tone, from sleep onset to the atonia that characterizes rapid eye movement (REM) sleep. Several brainstem structures (e.g., reticular pontis oralis, pontis caudalis, parvocellularis) and neurochemicals (e.g., serotonin, dopamine, gamma aminobutyric acid [GABA], noradrenaline) are involved in both the genesis of RJM and the modulation of muscle tone during sleep. It remains unknown why a high percentage of normal subjects present RMMA during sleep and why this activity is three times more frequent and higher in amplitude in SB patients. It is also unclear why RMMA during sleep is characterized by co-activation of both jaw-opening and jaw-closing muscles instead of the alternating jaw-opening and jaw-closing muscle activity pattern typical of chewing. The final section of this review proposes that RMMA during sleep has a role in lubricating the upper alimentary tract and increasing airway patency. The review concludes with an outline of questions for future research.

505 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the relationship between the autonomic nervous system and the pathophysiology of atrial fibrillation and the potential benefit and limitations of neuromodulation in the management of this arrhythmia.
Abstract: Autonomic nervous system activation can induce significant and heterogeneous changes of atrial electrophysiology and induce atrial tachyarrhythmias, including atrial tachycardia and atrial fibrillation (AF). The importance of the autonomic nervous system in atrial arrhythmogenesis is also supported by circadian variation in the incidence of symptomatic AF in humans. Methods that reduce autonomic innervation or outflow have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. In this review, we focus on the relationship between the autonomic nervous system and the pathophysiology of AF and the potential benefit and limitations of neuromodulation in the management of this arrhythmia. We conclude that autonomic nerve activity plays an important role in the initiation and maintenance of AF, and modulating autonomic nerve function may contribute to AF control. Potential therapeutic applications include ganglionated plexus ablation, renal sympathetic denervation, cervical vagal nerve stimulation, baroreflex stimulation, cutaneous stimulation, novel drug approaches, and biological therapies. Although the role of the autonomic nervous system has long been recognized, new science and new technologies promise exciting prospects for the future.

504 citations

Book
01 Jan 1987
TL;DR: Shapes and Geometries: Analysis, Differential Calculus, and Optimization as discussed by the authors provides a self-contained presentation of the mathematical foundations, constructions, and tools necessary for studying problems where the modeling, optimization, or control variable is no longer a set of parameters or functions but the shape or the structure of a geometric object.
Abstract: This book provides a self-contained presentation of the mathematical foundations, constructions, and tools necessary for studying problems where the modeling, optimization, or control variable is no longer a set of parameters or functions but the shape or the structure of a geometric object. Shapes and Geometries: Analysis, Differential Calculus, and Optimization presents the extensive, recently developed theoretical foundation to shape optimization in a form that can be used by the engineering community. It also clearly explains the state-of-the-art developments in a mathematical language that will attract mathematicians to open questions in this important field.

504 citations

Proceedings ArticleDOI
01 Apr 2001
TL;DR: The attempt to cluster similar queries according to their contents as well as user logs is described, and preliminary results show that the resulting clusters provide useful information for FAQ identification.
Abstract: In order to increase retrieval precision, some new search engines provide manually verified answers to Frequently Asked Queries (FAQs). An underlying task is the identification of FAQs. This paper describes our attempt to cluster similar queries according to their contents as well as user logs. Our preliminary results show that the resulting clusters provide useful information for FAQ identification.

504 citations


Authors

Showing all 45957 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Alan C. Evans183866134642
Richard H. Friend1691182140032
Anders Björklund16576984268
Charles N. Serhan15872884810
Fernando Rivadeneira14662886582
C. Dallapiccola1361717101947
Michael J. Meaney13660481128
Claude Leroy135117088604
Georges Azuelos134129490690
Phillip Gutierrez133139196205
Danny Miller13351271238
Henry T. Lynch13392586270
Stanley Nattel13277865700
Lucie Gauthier13267964794
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

93% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

92% related

Harvard University
530.3K papers, 38.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023118
2022485
20216,077
20205,753
20195,212
20184,696