scispace - formally typeset
Search or ask a question
Institution

University of Maryland, Baltimore County

EducationBaltimore, Maryland, United States
About: University of Maryland, Baltimore County is a education organization based out in Baltimore, Maryland, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 8749 authors who have published 20843 publications receiving 795706 citations. The organization is also known as: UMBC.


Papers
More filters
Proceedings ArticleDOI
01 Oct 2000
TL;DR: The volume illustration approach is introduced, combining the familiarity of a physics-based illumination model with the ability to enhance important features using non-photorealistic rendering techniques to enhance structural perception of volume models.
Abstract: Accurately and automatically conveying the structure of a volume model is a problem that has not been fully solved by existing volume rendering approaches. Physics-based volume rendering approaches create images which may match the appearance of translucent materials in nature but may not embody important structural details. Transfer function approaches allow flexible design of the volume appearance but generally require substantial hand-tuning for each new data set in order to be effective. We introduce the volume illustration approach, combining the familiarity of a physics-based illumination model with the ability to enhance important features using non-photorealistic rendering techniques. Since the features to be enhanced are defined on the basis of local volume characteristics rather than volume sample values, the application of volume illustration techniques requires less manual tuning than the design of a good transfer function. Volume illustration provides a flexible unified framework for enhancing structural perception of volume models through the amplification of features and the addition of illumination effects.

229 citations

Journal ArticleDOI
14 Dec 2012-Science
TL;DR: It is shown that jets produced by AGN and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, which implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power.
Abstract: Black holes generate collimated, relativistic jets, which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies [active galactic nuclei (AGN)]. How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGN is still unknown. Here, we show that jets produced by AGN and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGN and GRBs lying at the low- and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

228 citations

Journal ArticleDOI
TL;DR: A novel approach for energy-aware management of sensor networks that maximizes the lifetime of the sensors while achieving acceptable performance for sensed data delivery is presented.

228 citations

Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +181 moreInstitutions (36)
TL;DR: The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV as mentioned in this paper.
Abstract: The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. We use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and by using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models proposed to explain the excess of electrons and positrons measured by the Fermi-LAT and PAMELA experiments. Derived limits also start to probe cross sections expected from thermally produced relics (e.g. in minimal supersymmetry models) annihilating predominantly into quarks. For the monochromatic gamma-ray signature, the current measurement constrains only dark matter scenarios with very strong signals.

228 citations

Journal ArticleDOI
TL;DR: This work proposes a new process of recovering Co from spent Li-ion batteries by a combination of crushing, ultrasonic washing, acid leaching and precipitation, in which ultrasonicwashing was used for the first time as an alternative process to improve the recovery efficiency of Co and reduce energy consumption and pollution.

228 citations


Authors

Showing all 8862 results

NameH-indexPapersCitations
Robert C. Gallo14582568212
Paul T. Costa13340688454
Igor V. Moskalenko13254258182
James Chiang12930860268
Alex K.-Y. Jen12892161811
Alan R. Shuldiner12055771737
Richard N. Zare120120167880
Vince D. Calhoun117123462205
Rita R. Colwell11578155229
Kendall N. Houk11299754877
Elliot K. Fishman112133549298
Yoram J. Kaufman11126359238
Paulo Artaxo10745444346
Braxton D. Mitchell10255849599
Sushil Jajodia10166435556
Network Information
Related Institutions (5)
Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of Washington
305.5K papers, 17.7M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022165
20211,065
20201,091
2019989
2018929