scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Immunology in 2007"


Journal ArticleDOI
TL;DR: The data suggest that the LPS/TNF-α-dependent regulation of miR-155 and miR -125b may be implicated in the response to endotoxin shock, thus offering new targets for drug design.
Abstract: We report here that miR-155 and miR-125b play a role in innate immune response. LPS stimulation of mouse Raw 264.7 macrophages resulted in the up-regulation of miR-155 and down-regulation of miR-125b levels. The same changes also occurred when C57BL/6 mice were i.p. injected with LPS. Furthermore, the levels of miR-155 and miR-125b in Raw 264.7 cells displayed oscillatory changes in response to TNF-alpha. These changes were impaired by pretreating the cells with the proteasome inhibitor MG-132, suggesting that these two microRNAs (miRNAs) may be at least transiently under the direct control of NF-kappaB transcriptional activity. We show that miR-155 most probably directly targets transcript coding for several proteins involved in LPS signaling such as the Fas-associated death domain protein (FADD), IkappaB kinase epsilon (IKKepsilon), and the receptor (TNFR superfamily)-interacting serine-threonine kinase 1 (Ripk1) while enhancing TNF-alpha translation. In contrast, miR-125b targets the 3'-untranslated region of TNF-alpha transcripts; therefore, its down-regulation in response to LPS may be required for proper TNF-alpha production. Finally, Emu-miR-155 transgenic mice produced higher levels of TNF-alpha when exposed to LPS and were hypersensitive to LPS/d-galactosamine-induced septic shock. Altogether, our data suggest that the LPS/TNF-alpha-dependent regulation of miR-155 and miR-125b may be implicated in the response to endotoxin shock, thus offering new targets for drug design.

1,310 citations


Journal ArticleDOI
TL;DR: This work discusses how diverse outcomes in gene expression result from regulatory events that effect the JAK1-STAT3 pathway, common to both receptors and considers how the suppressor of cytokine signaling (SOCS) proteins regulate the quality and quantity of STAT signals from cytokine receptors.
Abstract: Universal and essential to cytokine receptor signaling, the JAK-STAT pathway is one of the best understood signal transduction cascades. Almost 40 cytokine receptors signal through combinations of four JAK and seven STAT family members, suggesting commonality across the JAK-STAT signaling system. Despite intense study, there remain substantial gaps in understanding how the cascades are activated and regulated. Using the examples of the IL-6 and IL-10 receptors, I will discuss how diverse outcomes in gene expression result from regulatory events that effect the JAK1-STAT3 pathway, common to both receptors. I also consider receptor preferences by different STATs and interpretive problems in the use of STAT-deficient cells and mice. Finally, I consider how the suppressor of cytokine signaling (SOCS) proteins regulate the quality and quantity of STAT signals from cytokine receptors. New data suggests that SOCS proteins introduce additional diversity into the JAK-STAT pathway by adjusting the output of activated STATs that alters downstream gene activation.

1,109 citations


Journal ArticleDOI
TL;DR: Functional analysis revealed that the vesicle preparation inhibited anti-CD3-induced IL-2 and IFN-γ production from allogeneic and autologous PBMC incubated with milk vesicles, concluding that human breast milk contains exosomes with the capacity to influence immune responses.
Abstract: Breast milk is a complex liquid with immune-competent cells and soluble proteins that provide immunity to the infant and affect the maturation of the infant's immune system. Exosomes are nanovesicles (30-100 nm) with an endosome-derived limiting membrane secreted by a diverse range of cell types. Because exosomes carry immunorelevant structures, they are suggested to participate in directing the immune response. We hypothesized that human breast milk contain exosomes, which may be important for the development of the infant's immune system. We isolated vesicles from the human colostrum and mature breast milk by ultracentrifugations and/or immuno-isolation on paramagnetic beads. We found that the vesicles displayed a typical exosome-like size and morphology as analyzed by electron microscopy. Furthermore, they floated at a density between 1.10 and 1.18 g/ml in a sucrose gradient, corresponding to the known density of exosomes. In addition, MHC classes I and II, CD63, CD81, and CD86 were detected on the vesicles by flow cytometry. Western blot and mass spectrometry further confirmed the presence of several exosome-associated molecules. Functional analysis revealed that the vesicle preparation inhibited anti-CD3-induced IL-2 and IFN-gamma production from allogeneic and autologous PBMC. In addition, an increased number of Foxp3(+)CD4(+)CD25(+) T regulatory cells were observed in PBMC incubated with milk vesicle preparations. We conclude that human breast milk contains exosomes with the capacity to influence immune responses.

999 citations


Journal ArticleDOI
TL;DR: It is found that 1,25(OH)2D3 may play an important role in the maintenance of B cell homeostasis and that the correction of vitamin D deficiency may be useful in the treatment of B Cell-mediated autoimmune disorders.
Abstract: 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) can modulate immune responses, but whether it directly affects B cell function is unknown Patients with systemic lupus erythematosus, especially those with antinuclear Abs and increased disease activity, had decreased 1,25(OH)(2)D(3) levels, suggesting that vitamin D might play a role in regulating autoantibody production To address this, we examined the effects of 1,25(OH)(2)D(3) on B cell responses and found that it inhibited the ongoing proliferation of activated B cells and induced their apoptosis, whereas initial cell division was unimpeded The generation of plasma cells and postswitch memory B cells was significantly inhibited by 1,25(OH)(2)D(3), although the up-regulation of genetic programs involved in B cell differentiation was only modestly affected B cells expressed mRNAs for proteins involved in vitamin D activity, including 1 alpha-hydroxylase, 24-hydroxylase, and the vitamin D receptor, each of which was regulated by 1,25(OH)(2)D(3) and/or activation Importantly, 1,25(OH)(2)D(3) up-regulated the expression of p27, but not of p18 and p21, which may be important in regulating the proliferation of activated B cells and their subsequent differentiation These results indicate that 1,25(OH)(2)D(3) may play an important role in the maintenance of B cell homeostasis and that the correction of vitamin D deficiency may be useful in the treatment of B cell-mediated autoimmune disorders

988 citations


Journal ArticleDOI
TL;DR: Treatment with intrapulmonary MSC markedly decreases the severity of endotoxin-induced acute lung injury and improves survival in mice.
Abstract: Recent in vivo and in vitro work suggests that mesenchymal stem cells (MSC) have anti-inflammatory properties. In this study, we tested the effect of administering MSC directly into the airspaces of the lung 4 h after the intrapulmonary administration of Escherichia coli endotoxin (5 mg/kg). MSC increased survival compared with PBS-treated control mice at 48 h (80 vs 42%; p < 0.01). There was also a significant decrease in excess lung water, a measure of pulmonary edema (145 ± 50 vs 87 ± 20 μl; p < 0.01), and bronchoalveolar lavage protein, a measure of endothelial and alveolar epithelial permeability (3.1 ± 0.4 vs 2.2 ± 0.8 mg/ml; p < 0.01), in the MSC-treated mice. These protective effects were not replicated by the use of further controls including fibroblasts and apoptotic MSC. The beneficial effect of MSC was independent of the ability of the cells to engraft in the lung and was not related to clearance of the endotoxin by the MSC. MSC administration mediated a down-regulation of proinflammatory responses to endotoxin (reducing TNF-α and MIP-2 in the bronchoalveolar lavage and plasma) while increasing the anti-inflammatory cytokine IL-10. In vitro coculture studies of MSC with alveolar macrophages provided evidence that the anti-inflammatory effect was paracrine and was not cell contact dependent. In conclusion, treatment with intrapulmonary MSC markedly decreases the severity of endotoxin-induced acute lung injury and improves survival in mice.

859 citations


Journal ArticleDOI
TL;DR: It is shown that recombinant visfatin activates human leukocytes and induces cytokine production and in vivo, visFatin induces circulating IL-6 in BALB/c mice and can be considered a new proinflammatory adipocytokine.
Abstract: Adipocytokines are mainly adipocyte-derived cytokines regulating metabolism and as such are key regulators of insulin resistance. Some adipocytokines such as adiponectin and leptin affect immune and inflammatory functions. Visfatin (pre-B cell colony-enhancing factor) has recently been identified as a new adipocytokine affecting insulin resistance by binding to the insulin receptor. In this study, we show that recombinant visfatin activates human leukocytes and induces cytokine production. In CD14(+) monocytes, visfatin induces the production of IL-1beta, TNF-alpha, and especially IL-6. Moreover, it increases the surface expression of costimulatory molecules CD54, CD40, and CD80. Visfatin-stimulated monocytes show augmented FITC-dextran uptake and an enhanced capacity to induce alloproliferative responses in human lymphocytes. Visfatin-induced effects involve p38 as well as MEK1 pathways as determined by inhibition with MAPK inhibitors and we observed activation of NF-kappaB. In vivo, visfatin induces circulating IL-6 in BALB/c mice. In patients with inflammatory bowel disease, plasma levels of visfatin are elevated and its mRNA expression is significantly increased in colonic tissue of Crohn's and ulcerative colitis patients compared with healthy controls. Macrophages, dendritic cells, and colonic epithelial cells might be additional sources of visfatin as determined by confocal microscopy. Visfatin can be considered a new proinflammatory adipocytokine.

844 citations


Journal ArticleDOI
TL;DR: Analysis of IL-2Rβ-dependent signal transduction pathways established that the transcription factor STAT5 is necessary and sufficient for Treg development, and ectopic expression of foxp3 in a subset of CD4+ T cells rescued T Reg development and prevented autoimmunity in IL- 2Rβ−/− mice.
Abstract: IL-2(-/-) mice develop autoimmunity despite having relatively normal numbers of regulatory T cells (Tregs). In contrast, we demonstrate that IL-2(-/-) x IL-15(-/-) and IL-2Rbeta(-/-) mice have a significant decrease in Treg numbers. Ectopic expression of foxp3 in a subset of CD4(+) T cells rescued Treg development and prevented autoimmunity in IL-2Rbeta(-/-) mice, suggesting that IL-2Rbeta-dependent signals regulate foxp3 expression in Tregs. Subsequent analysis of IL-2Rbeta-dependent signal transduction pathways established that the transcription factor STAT5 is necessary and sufficient for Treg development. Specifically, T cell-specific deletion of STAT5 prevented Treg development; conversely, reconstitution of IL-2Rbeta(-/-) mice with bone marrow cells expressing an IL-2Rbeta mutant that exclusively activates STAT5 restored Treg development. Finally, STAT5 binds to the promoter of the foxp3 gene suggesting that IL-2Rbeta-dependent STAT5 activation promotes Treg differentiation by regulating expression of foxp3.

773 citations


Journal ArticleDOI
TL;DR: It is demonstrated that cathelicidin is required for the 1,25D3-triggered antimicrobial activity against intracellular M. tuberculosis.
Abstract: Host defense against intracellular pathogens depends upon innate and adaptive antimicrobial effector pathways. TLR2/1-activation of monocytes leads to the vitamin D-dependent production of cathelicidin and, at the same time, an antimicrobial activity against intracellular Mycobacterium tuberculosis. To determine whether induction of cathelicidin was required for the vitamin D-triggered antimicrobial activity, the human monocytic cell line THP-1 was infected with M. tuberculosis H37Ra and then activated with the active vitamin D hormone 1,25-dihydroxyvitamin D(3) (1,25D(3)). 1,25D(3) stimulation resulted in antimicrobial activity against intracellular M. tuberculosis and expression of cathelicidin mRNA and protein. Using small interfering RNA (siRNA) specific for cathelicidin, 1,25D(3)-induced cathelicidin mRNA and protein expressions were efficiently knocked down, whereas a nonspecific siRNA control had little effect. Finally, 1,25D(3)-induced antimicrobial activity was completely inhibited in the presence of siRNA against cathelicidin, instead leading to enhanced intracellular growth of mycobacteria. These data demonstrate that cathelicidin is required for the 1,25D(3)-triggered antimicrobial activity against intracellular M. tuberculosis.

770 citations


Journal ArticleDOI
TL;DR: MDSC impair tumor immunity by suppressing T cell activation and by interacting with macrophages to increase IL-10 and decrease IL-12 production, thereby promoting a tumor-promoting type 2 response, a process that can be partially reversed by gemcitabine.
Abstract: Although the immune system has the potential to protect against malignancies, many individuals with cancer are immunosuppressed. Myeloid-derived suppressor cells (MDSC) are elevated in many patients and animals with tumors, and contribute to immune suppression by blocking CD4 + and CD8 + T cell activation. Using the spontaneously metastatic 4T1 mouse mammary carcinoma, we now demonstrate that cross-talk between MDSC and macrophages further subverts tumor immunity by increasing MDSC production of IL-10, and by decreasing macrophage production of IL-12. Cross-talk between MDSC and macrophages requires cell-cell contact, and the IL-12 decrease is dependent on MDSC production of IL-10. Treatment with the chemotherapeutic drug gemcitabine, which reduces MDSC, promotes rejection of established metastatic disease in IL-4Rα −/− mice that produce M1 macrophages by allowing T cell activation, by maintaining macrophage production of IL-12, and by preventing increased production of IL-10. Therefore, MDSC impair tumor immunity by suppressing T cell activation and by interacting with macrophages to increase IL-10 and decrease IL-12 production, thereby promoting a tumor-promoting type 2 response, a process that can be partially reversed by gemcitabine.

754 citations


Journal ArticleDOI
TL;DR: Results indicate that CD4+CD25+Foxp3+ regulatory T cells can function as inducers of Th 17 cells and can differentiate into Th17 cells, which have important implications to the understanding of regulatory T cell function and their possible therapeutic use.
Abstract: Recent studies have shown that TGF-beta together with IL-6 induce the differentiation of IL-17-producing T cells (Th17) T cells. We therefore examined whether CD4(+)CD25(+)Foxp3(+) regulatory T cells, i.e., cells previously shown to produce TGF-beta, serve as Th17 inducers. We found that upon activation purified CD25(+) T cells (or sorted GFP(+) T cells obtained from Foxp3-GFP knockin mice) produce high amounts of soluble TGF-beta and when cultured with CD4(+)CD25(-)Foxp3(-) T cells in the presence of IL-6 induce the latter to differentiate into Th17 cells. Perhaps more importantly, upon activation, CD4(+)CD25(+)Foxp3(+)(GFP(+)) T cells themselves differentiate into Th17 cells in the presence of IL-6 (and in the absence of exogenous TGF-beta). These results indicate that CD4(+)CD25(+)Foxp3(+) regulatory T cells can function as inducers of Th17 cells and can differentiate into Th17 cells. They thus have important implications to our understanding of regulatory T cell function and their possible therapeutic use.

724 citations


Journal ArticleDOI
TL;DR: It is suggested that development and/or maintenance of a PD-1high follicular Th cell subset is dependent on appropriate interaction with GC B cells, and this study finds that transgenic CXCR5 overexpression is not sufficient to promote follicular entry of naive T cells unless the counterbalancing influence of CCR7 ligands is removed.
Abstract: Th cell access to primary B cell follicles is dependent on CXCR5. However, whether CXCR5 induction on T cells is sufficient in determining their follicular positioning has been unclear. In this study, we find that transgenic CXCR5 overexpression is not sufficient to promote follicular entry of naive T cells unless the counterbalancing influence of CCR7 ligands is removed. In contrast, the positioning of Ag-engaged T cells at the B/T boundary could occur in the absence of CXCR5. The germinal center (GC) response was 2-fold reduced when T cells lacked CXCR5, although these T cells were able to access the GC. Finally, CXCR5(high)CCR7(low) T cells were found to have elevated IL-4 transcript and programmed cell death gene-1 (PD-1) expression, and PD-1(high) cells were reduced in the absence of T cell CXCR5 or in mice compromised in GC formation. Overall, these findings provide further understanding of how the changes in CXCR5 and CCR7 expression regulate Th cell positioning during Ab responses, and they suggest that development and/or maintenance of a PD-1(high) follicular Th cell subset is dependent on appropriate interaction with GC B cells.

Journal ArticleDOI
TL;DR: The role of IL-2 on the generation of peripheral regulatory CD4+ cells is indirect and is nonredundant, but IL-4, IL-7, and IL-15, other common γ-chain cytokines, could sustain Foxp3 expression.
Abstract: IL-2 and TGF-beta both have important roles in the induction and maintenance of immunologic tolerance, but whether these cytokines act separately or together to achieve this effect is poorly understood. Although others have reported that IL-2 can directly enhance forkhead box protein P3 (Foxp3) transcription factor expression by natural CD4(+)CD25(+) regulatory T cells, in this study, we report that the role of IL-2 on the generation of peripheral regulatory CD4(+) cells is indirect. Ab neutralization studies and experiments with IL-2-deficient mice have revealed that IL-2 is required for TGF-beta to induce naive CD4(+)CD25(-) cells to become CD25(+) and express Foxp3, and develop the characteristic properties of CD4(+)CD25(+) regulatory cells. This effect of IL-2 on the generation and expansion of these adaptive Foxp3(+) regulatory cells is nonredundant, but IL-4, IL-7, and IL-15, other common gamma-chain cytokines, could sustain Foxp3 expression. Because subjects with autoimmune diseases often have defects in the production of IL-2 and/or TGF-beta, the generation of autologous T regulatory cells ex vivo with these cytokines for transfer in vivo may have considerable therapeutic potential.

Journal ArticleDOI
TL;DR: Results indicate that RvE1 binds toBLT1 as a partial agonist, potentially serving as a local damper of BLT1 signals on leukocytes along with other receptors (e.g., ChemR23-mediated counterregulatory actions) to mediate the resolution of inflammation.
Abstract: Resolvin E1 (RvE1) is a potent anti-inflammatory and proresolving mediator derived from omega-3 eicosapentaenoic acid generated during the resolution phase of inflammation. RvE1 possesses a unique structure and counterregulatory actions that stop human polymorphonuclear leukocyte (PMN) transendothelial migration and PMN infiltration in several murine inflammatory models. To examine the mechanism(s) underlying anti-inflammatory actions on PMNs, we prepared [(3)H]RvE1 and characterized its interactions with human PMN. Results with membrane fractions of human PMN demonstrated specific binding with a K(d) of 48.3 nM. [(3)H]RvE1 specific binding to human PMN was displaced by leukotriene B(4) (LTB(4)) and LTB(4) receptor 1 (BLT1) antagonist U-75302, but not by chemerin peptide, a ligand specific for another RvE1 receptor ChemR23. Recombinant human BLT1 gave specific binding with [(3)H]RvE1 with a K(d) of 45 nM. RvE1 selectively inhibited adenylate cyclase with BLT1, but not with BLT2. In human PBMC, RvE1 partially induced calcium mobilization, and blocked subsequent stimulation by LTB(4). RvE1 also attenuated LTB(4)-induced NF-kappaB activation in BLT1-transfected cells. In vivo anti-inflammatory actions of RvE1 were sharply reduced in BLT1 knockout mice when given at low doses (100 ng i.v.) in peritonitis. In contrast, RvE1 at higher doses (1.0 mug i.v.) significantly reduced PMN infiltration in a BLT1-independent manner. These results indicate that RvE1 binds to BLT1 as a partial agonist, potentially serving as a local damper of BLT1 signals on leukocytes along with other receptors (e.g., ChemR23-mediated counterregulatory actions) to mediate the resolution of inflammation.

Journal ArticleDOI
TL;DR: In vivo evidence is provided that the fundamental role of STAT3 signaling in autoimmunity relates to its absolute requirement for generating TH17 T cell responses, and STAT3 is a candidate target for TH17-dependent autoimmune disease immunotherapy that could selectively inhibit pathogenic immune pathways.
Abstract: STAT3 activation has been observed in several autoimmune diseases, suggesting that STAT3-mediated pathways promote pathologic immune responses. We provide in vivo evidence that the fundamental role of STAT3 signaling in autoimmunity relates to its absolute requirement for generating T H 17 T cell responses. We show that STAT3 is a master regulator of this pathogenic T cell subtype, acting at multiple levels in vivo, including T H 17 T cell differentiation and cytokine production, as well as induction of RORγt and the IL-23R. Neither naturally occurring T H 17 cells nor T H 17-dependent autoimmunity occurs when STAT3 is ablated in CD4 cells. Furthermore, ablation of STAT3 signaling in CD4 cells results in increased T H 1 responses, indicating that STAT3 signaling skews T H responses away from the T H 1 pathway and toward the T H 17 pathway. Thus, STAT3 is a candidate target for T H 17-dependent autoimmune disease immunotherapy that could selectively inhibit pathogenic immune pathways.

Journal ArticleDOI
TL;DR: These data are the first to demonstrate a reversible defect in CD4+CD25high Treg function in patients with active SLE, and suggest that strategies to enhance the function of these cells might benefit patients with this autoimmune disease.
Abstract: CD4(+)CD25(+) T regulatory cells (Tregs) play an essential role in maintaining immunologic homeostasis and preventing autoimmunity. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance to nuclear components. We hypothesized that altered function of CD4(+)CD25(high) Tregs might play a role in the breakdown of immunologic self-tolerance in patients with SLE. In this study, we report a significant decrease in the suppressive function of CD4(+)CD25(high) Tregs from peripheral blood of patients with active SLE as compared with normal donors and patients with inactive SLE. Notably, CD4(+)CD25(high) Tregs isolated from patients with active SLE expressed reduced levels of FoxP3 mRNA and protein and poorly suppressed the proliferation and cytokine secretion of CD4(+) effector T cells in vitro. In contrast, the expression of FoxP3 mRNA and protein and in vitro suppression of the proliferation of CD4(+) effector T cells by Tregs isolated from inactive SLE patients, was comparable to that of normal individuals. In vitro activation of CD4(+)CD25(high) Tregs from patients with active SLE increased FoxP3 mRNA and protein expression and restored their suppressive function. These data are the first to demonstrate a reversible defect in CD4(+)CD25(high) Treg function in patients with active SLE, and suggest that strategies to enhance the function of these cells might benefit patients with this autoimmune disease.

Journal ArticleDOI
TL;DR: This study confirms that effector cytokine production by normal human B cells is context dependent and demonstrates that this involves the reciprocal regulation of proinflammatory and anti-inflammatory cytokines, and proposes a model that ascribes distinct and proactive roles to memory and naive B cell subsets in the regulation of memory immune responses and in autoimmunity.
Abstract: Although recent animal studies have fuelled growing interest in Ab-independent functions of B cells, relatively little is known about how human B cells and their subsets may contribute to the regulation of immune responses in either health or disease. In this study, we first confirm that effector cytokine production by normal human B cells is context dependent and demonstrate that this involves the reciprocal regulation of proinflammatory and anti-inflammatory cytokines. We further report that this cytokine network is dysregulated in patients with the autoimmune disease multiple sclerosis, whose B cells exhibit a decreased average production of the down-regulatory cytokine IL-10. Treatment with the approved chemotherapeutic agent mitoxantrone reciprocally modulated B cell proinflammatory and anti-inflammatory cytokines, establishing that the B cell cytokine network can be targeted in vivo. Prospective studies of human B cells reconstituting following in vivo depletion suggested that different B cell subsets produced distinct effector cytokines. We confirmed in normal human B cell subsets that IL-10 is produced almost exclusively by naive B cells while the proinflammatory cytokines lymphotoxin and TNF-alpha are largely produced by memory B cells. These results point to an in vivo switch in the cytokine "program" of human B cells transitioning from the naive pool to the memory pool. We propose a model that ascribes distinct and proactive roles to memory and naive human B cell subsets in the regulation of memory immune responses and in autoimmunity. Our findings are of particular relevance at a time when B cell directed therapies are being applied to clinical trials of several autoimmune diseases.

Journal ArticleDOI
TL;DR: It is demonstrated that Stat3 is required for programming the TGFβ1 plus IL-6 and IL-23-stimulated IL-17-secreting phenotype, as well as for RORγt expression in TGF β1 plusIL-6-primed cells.
Abstract: IL-17-secreting CD4 + T cells are critically involved in inflammatory immune responses. Development of these cells is promoted in vivo and in vitro by IL-23 or TGFβ1 plus IL-6. Despite growing interest in this inflammatory Th subset, little is known about the transcription factors that are required for their development. We demonstrate that Stat3 is required for programming the TGFβ1 plus IL-6 and IL-23-stimulated IL-17-secreting phenotype, as well as for RORγt expression in TGFβ1 plus IL-6-primed cells. Moreover, retroviral transduction of a constitutively active Stat3 into differentiating T cell cultures enhances IL-17 production from these cells. We further show that Stat4 is partially required for the development of IL-23-, but not TGFβ1 plus IL-6-primed IL-17-secreting cells, and is absolutely required for IL-17 production in response to IL-23 plus IL-18. The requirements for Stat3 and Stat4 in the development of these IL-17-secreting subsets reveal additional mechanisms in Th cell fate decisions during the generation of proinflammatory cell types.

Journal ArticleDOI
TL;DR: Neither secretory lysosome exocytosis nor microvesicle shedding models constitute the major pathways for nonclassical IL-1β secretion from ATP-stimulated murine macrophages, and the findings suggest an alternative model of IL- 1β release that may involve the P2X7R-induced formation of multivesicular bodies that contain exosomes with entrapped IL-2β, caspase-1, and other inflammasome components.
Abstract: Several mechanistically distinct models of nonclassical secretion, including exocytosis of secretory lysosomes, shedding of plasma membrane microvesicles, and direct efflux through plasma membrane transporters, have been proposed to explain the rapid export of caspase-1-processed IL-1 beta from monocytes/macrophages in response to activation of P2X7 receptors (P2X7R) by extracellular ATP. We compared the contribution of these mechanisms to P2X7R-stimulated IL-1 beta secretion in primary bone marrow-derived macrophages isolated from wild-type, P2X7R knockout, or apoptosis-associated speck-like protein containing a C-terminal CARD knockout mice. Our experiments revealed the following: 1) a novel correlation between IL-1 beta secretion and the release of the MHC-II membrane protein, which is a marker of plasma membranes, recycling endosomes, multivesicular bodies, and released exosomes; 2) a common and absolute requirement for inflammasome assembly and active caspase-1 in triggering the cotemporal export of IL-1 beta and MHC-II; and 3) mechanistic dissociation of IL-1 beta export from either secretory lysosome exocytosis or plasma membrane microvesicle shedding on the basis of different requirements for extracellular Ca(2+) and differential sensitivity to pharmacological agents that block activation of caspase-1 inflammasomes. Thus, neither secretory lysosome exocytosis nor microvesicle shedding models constitute the major pathways for nonclassical IL-1 beta secretion from ATP-stimulated murine macrophages. Our findings suggest an alternative model of IL-1 beta release that may involve the P2X7R-induced formation of multivesicular bodies that contain exosomes with entrapped IL-1 beta, caspase-1, and other inflammasome components.

Journal ArticleDOI
TL;DR: Lung-infiltrating T cells of IL-17-deficient mice produced less IFN-γ in comparison to those from wild-type mice 4 wk after BCG infection, which is consistent with the decreased delayed-type hypersensitivity response of the infected mice against mycobacterial Ag.
Abstract: IL-17 is a cytokine that induces neutrophil-mediated inflammation, but its role in protective immunity against intracellular bacterial infection remains unclear. In the present study, we demonstrate that IL-17 is an important cytokine not only in the early neutrophil-mediated inflammatory response, but also in T cell-mediated IFN-gamma production and granuloma formation in response to pulmonary infection by Mycobacterium bovis bacille Calmette-Guerin (BCG). IL-17 expression in the BCG-infected lung was detected from the first day after infection and the expression depended on IL-23. Our observations indicated that gammadelta T cells are a primary source of IL-17. Lung-infiltrating T cells of IL-17-deficient mice produced less IFN-gamma in comparison to those from wild-type mice 4 wk after BCG infection. Impaired granuloma formation was also observed in the infected lungs of IL-17-deficient mice, which is consistent with the decreased delayed-type hypersensitivity response of the infected mice against mycobacterial Ag. These data suggest that IL-17 is an important cytokine in the induction of optimal Th1 response and protective immunity against mycobacterial infection.

Journal ArticleDOI
TL;DR: Different and even competing responses are demonstrated at the level of macrophage cytokine production with implications for their respective roles in inflammation, including a possible dampening or suppressive role for M-CSF in certain circumstances.
Abstract: GM-CSF and M-CSF (CSF-1) can enhance macrophage lineage numbers as well as modulate their differentiation and function. Of recent potential significance for the therapy of inflammatory/autoimmune diseases, their blockade in relevant animal models leads to a reduction in disease activity. What the critical actions are of these CSFs on macrophages during inflammatory reactions are unknown. To address this issue, adherent macrophages (GM-BMM and BMM) were first derived from murine bone marrow precursors by GM-CSF and M-CSF, respectively, and stimulated in vitro with LPS to measure secreted cytokine production, as well as NF-κB and AP-1 activities. GM-BMM preferentially produced TNF-α, IL-6, IL-12p70, and IL-23 whereas, conversely, BMM generated more IL-10 and CCL2; strikingly the latter population could not produce detectable IL-12p70 and IL-23. Following LPS stimulation, GM-BMM displayed rapid IκBα degradation, RelA nuclear translocation, and NF-κB DNA binding relative to BMM, as well as a faster and enhanced AP-1 activation. Each macrophage population was also pretreated with the other CSF before LPS stimulation and found to adopt the phenotype of the other population to some extent as judged by cytokine production and NF-κB activity. Thus, GM-CSF and M-CSF demonstrate, at the level of macrophage cytokine production, different and even competing responses with implications for their respective roles in inflammation, including a possible dampening or suppressive role for M-CSF in certain circumstances.

Journal ArticleDOI
TL;DR: It is found that Mtb targets DC migration and Ag presentation in vivo to promote persistent infection, and the lung cell populations that are infected with Mtb at high frequency are relatively ineffective at stimulating Ag-specific CD4+ T lymphocytes.
Abstract: Mycobacterium tuberculosis (Mtb) is thought to reside in macrophages, although infected dendritic cells (DCs) have been observed. Thus, although cellular associations have been made, global characterization of the cells harboring Mtb is lacking. We have performed temporal and quantitative characterization of the cells harboring Mtb following aerosol infection of mice by using GFP-expressing bacteria and flow cytometry. We discovered that Mtb infects phagocytic cells of diverse phenotypes, that the predominant infected cell populations change with time, and that myeloid DCs are the major cell population infected with Mtb in the lungs and lymph nodes. We also found that the bacteria in the lung-draining lymph node are transported there from the lungs by a CCL19/21-dependent mechanism and that the transport of bacteria to the lymph node is a transient phenomenon despite chronic infection. In addition, we found that the lymph node cell subsets that are most efficacious in stimulating Mtb-specific, TCR-transgenic CD4(+) T lymphocytes are not infected with the bacteria and are scarce or absent from the lungs of infected mice. Finally, we found that the lung cell populations that are infected with Mtb at high frequency are relatively ineffective at stimulating Ag-specific CD4(+) T lymphocytes, and we have obtained evidence that live Mtb can inhibit MHC class II Ag presentation without a decrease in the surface expression of MHC class II. These results indicate that Mtb targets DC migration and Ag presentation in vivo to promote persistent infection.

Journal ArticleDOI
TL;DR: The ability to regulate an established immune response by T2-MZP B cells endows this subset of B cells with a striking and previously unrecognized immunoregulatory potential.
Abstract: The immune system contains natural regulatory cells important in the maintenance of tolerance. Although this suppressive function is usually attributed to CD4 regulatory T cells, recent reports have revealed an immunoregulatory role for IL-10-producing B cells in the context of several autoimmune diseases including collagen-induced arthritis. In the present study, we attribute this suppressive function to a B cell subset expressing high levels of CD21, CD23, and IgM, previously identified as transitional 2-marginal zone precursor (T2-MZP) B cells. T2-MZP B cells are present in the spleens of naive mice and increase during the remission phase of arthritis. Following adoptive transfer to immunized DBA/1 mice, T2-MZP B cells significantly prevented new disease and ameliorated established disease. The suppressive effect on arthritis was paralleled by an inhibition of Ag-specific T cell activation and a reduction in cells exhibiting Th1-type functional responses. We also provide evidence that this regulatory subset mediates its suppression through the secretion of suppressive cytokines and not by cell-to-cell contact. The ability to regulate an established immune response by T2-MZP B cells endows this subset of B cells with a striking and previously unrecognized immunoregulatory potential.

Journal ArticleDOI
TL;DR: TGF-β is a pluripotent cytokine that is capable of inducing the expression of Foxp3 in naive T lymphocytes and may prove useful for the treatment of autoimmune diseases, for the prevention of graft rejection, and graft versus host disease.
Abstract: TGF-beta is a pluripotent cytokine that is capable of inducing the expression of Foxp3 in naive T lymphocytes. TGF-beta-induced cells are phenotypically similar to thymic-derived regulatory T cells in that they are anergic and suppressive. We have examined the cytokine and costimulatory molecule requirements for TGF-beta-mediated induction and maintenance of Foxp3 by CD4(+)Foxp3(-) cells. IL-2 plays a non-redundant role in TGF-beta-induced Foxp3 expression. Other common gamma-chain-utilizing cytokines were unable to induce Foxp3 expression in IL-2-deficient T cells. The role of CD28 in the induction of Foxp3 was solely related to its capacity to enhance the endogenous production of IL-2. Foxp3 expression was stable in vitro and in vivo in the absence of IL-2. As TGF-beta-induced T regulatory cells can be easily grown in vitro, they may prove useful for the treatment of autoimmune diseases, for the prevention of graft rejection, and graft versus host disease.

Journal ArticleDOI
TL;DR: It is reported that IL-33 directly stimulates primary human mast cells to produce several proinflammatory cytokines and chemokines and also exerts a permissive effect on the MCs response to thymic stromal lymphopoietin, a recently described potent MCs activator.
Abstract: IL-33, the natural ligand of the IL-1 receptor family member ST2L, is known to enhance experimental allergic-type inflammatory responses by costimulating the production of cytokines from activated Th2 lymphocytes. Although ST2L has long been known to be expressed by mast cells, its role in their biology has not been explored. In this study we report that IL-33 directly stimulates primary human mast cells (MCs) to produce several proinflammatory cytokines and chemokines and also exerts a permissive effect on the MCs response to thymic stromal lymphopoietin, a recently described potent MCs activator. IL-33 also acts both alone and in concert with thymic stromal lymphopoietin to accelerate the in vitro maturation of CD34 + MC precursors and induce the secretion of Th2 cytokines and Th2-attracting chemokines. Taken together, these results suggest that IL-33 may play an important role in mast cell-mediated inflammation and further emphasize the role of innate immunity in allergic diseases.

Journal ArticleDOI
TL;DR: A new population of memory B cells containing isotype-switched (IgG and IgA) and IgM-only cells and lacking expression of CD27 and IgD is described, enhancing the understanding of the B cell diversification pathways and providing mechanistic insight into the immunopathogenesis of SLE.
Abstract: Human memory B cells comprise isotype-switched and nonswitched cells with both subsets displaying somatic hypermutation. In addition to somatic hypermutation, CD27 expression has also been considered a universal memory B cell marker. We describe a new population of memory B cells containing isotype-switched (IgG and IgA) and IgM-only cells and lacking expression of CD27 and IgD. These cells are present in peripheral blood and tonsils of healthy subjects and display a degree of hypermutation comparable to CD27+ nonswitched memory cells. As conventional memory cells, they proliferate in response to CpG DNA and fail to extrude rhodamine. In contrast to other recently described CD27-negative (CD27neg) memory B cells, they lack expression of FcRH4 and recirculate in the peripheral blood. Although CD27neg memory cells are relatively scarce in healthy subjects, they are substantially increased in systemic lupus erythematosus (SLE) patients in whom they frequently represent a large fraction of all memory B cells. Yet, their frequency is normal in patients with rheumatoid arthritis or chronic hepatitis C. In SLE, an increased frequency of CD27neg memory cells is significantly associated with higher disease activity index, a history of nephritis, and disease-specific autoantibodies (anti-dsDNA, anti-Smith (Sm), anti-ribonucleoprotein (RNP), and 9G4). These findings enhance our understanding of the B cell diversification pathways and provide mechanistic insight into the immunopathogenesis of SLE.

Journal ArticleDOI
TL;DR: It is shown for the first time that IL-1β at physiologically relevant concentrations causes an increase in intestinal epithelial TJ permeability.
Abstract: IL-1β is a prototypical proinflammatory cytokine that plays a central role in the intestinal inflammation amplification cascade. Recent studies have indicated that a TNF-α- and IFN-γ-induced increase in intestinal epithelial paracellular permeability may be an important mechanism contributing to intestinal inflammation. Despite its central role in promoting intestinal inflammation, the role of IL-1β on intestinal epithelial tight junction (TJ) barrier function remains unclear. The major aims of this study were to determine the effect of IL-1β on intestinal epithelial TJ permeability and to elucidate the mechanisms involved in this process, using a well-established in vitro intestinal epithelial model system consisting of filter-grown Caco-2 intestinal epithelial monolayers. IL-1β (0–100 ng/ml) produced a concentration- and time-dependent decrease in Caco-2 transepithelial resistance. Conversely, IL-1β caused a progressive time-dependent increase in transepithelial permeability to paracellular marker inulin. IL-1β-induced increase in Caco-2 TJ permeability was accompanied by a rapid activation of NF-κB. NF-κB inhibitors, pyrrolidine dithiocarbamate and curcumin, prevented the IL-1β-induced increase in Caco-2 TJ permeability. To further confirm the role of NF-κB in the IL-1β-induced increase in Caco-2 TJ permeability, NF-κB p65 expression was silenced by small interfering RNA transfection. NF-κB p65 depletion completely inhibited the IL-1β-induced increase in Caco-2 TJ permeability. IL-1β did not induce apoptosis in the Caco-2 cell. In conclusion, our findings show for the first time that IL-1β at physiologically relevant concentrations causes an increase in intestinal epithelial TJ permeability. The IL-1β-induced increase in Caco-2 TJ permeability was mediated in part by the activation of NF-κB pathways but not apoptosis.

Journal ArticleDOI
TL;DR: It is demonstrated that IL-33 and ST2 form a complex with IL-1R accessory protein (IL-1RAcP), a signaling receptor subunit that is also a member of the IL- 1R complex.
Abstract: IL-33 (IL-1F11) is a recently described member of the IL-1 family of cytokines that stimulates the generation of cells, cytokines, and Igs characteristic of a type 2 immune response. IL-33 mediates signal transduction through ST2, a receptor expressed on Th2 and mast cells. In this study, we demonstrate that IL-33 and ST2 form a complex with IL-1R accessory protein (IL-1RAcP), a signaling receptor subunit that is also a member of the IL-1R complex. Additionally, IL-1RAcP is required for IL-33-induced in vivo effects, and IL-33-mediated signal transduction can be inhibited by dominant-negative IL-1RAcP. The implications of this shared usage of IL-1RAcP by IL-1(α and β) and IL-33 are discussed.

Journal ArticleDOI
TL;DR: It is shown that macrophages and mice lacking RICK are defective in their responses to Nod1 and Nod2 agonists but exhibit unimpaired responses to synthetic and highly purified TLR agonists.
Abstract: RICK is a kinase that has been implicated in Nod1 and Nod2 signaling. In addition, RICK has been proposed to mediate TLR signaling in that its absence confers reduced responses to certain bacterial products such as LPS. We show here that macrophages and mice lacking RICK are defective in their responses to Nod1 and Nod2 agonists but exhibit unimpaired responses to synthetic and highly purified TLR agonists. Furthermore, production of chemokines induced by the bacterial dipeptide gamma-d-glutamyl-meso-diaminopimelic acid was intact in MyD88 deficient mice but abolished in RICK-null mice. Stimulation of macrophages with muramyl dipeptide, the Nod2 activator, enhanced immune responses induced by LPS, IFN-gamma, and heat-killed Listeria in wild-type but not in RICK- or Nod2-deficient macrophages. Finally, we show that the absence of RICK or double deficiency of Nod1 and Nod2 was associated with reduced cytokine production in Listeria-infected macrophages. These results demonstrate that RICK functions in innate immunity by mediating Nod1 and Nod2 signaling but not TLR-mediated immune responses.


Journal ArticleDOI
TL;DR: The findings suggest that IL-21 produced by TFH cells during the primary as well as the subsequent responses to T cell-dependent Ag makes a major contribution to eliciting and maintaining long-lived humoral immunity.
Abstract: Differentiation of B cells into Ig-secreting cells (ISC) is critical for the generation of protective humoral immune responses. Because of the important role played by secreted Ig in host protection against infection, it is necessary to identify molecules that control B cell differentiation. Recently, IL-21 was reported to generate ISC from activated human B cells. In this study, we examined the effects of IL-21 on the differentiation of all human mature B cell subsets—neonatal, transitional, naive, germinal center, IgM-memory, and isotype-switched memory cells—into ISC and compared its efficacy to that of IL-10, a well-known mediator of human B cell differentiation. IL-21 rapidly induced the generation of ISC and the secretion of vast quantities IgM, IgG and IgA from all of these B cell subsets. Its effect exceeded that of IL-10 by up to 100-fold, highlighting the potency of IL-21 as a B cell differentiation factor. Strikingly, IL-4 suppressed the stimulatory effects of IL-21 on naive B cells by reducing the expression of B-lymphocyte induced maturation protein-1 (Blimp-1). In contrast, memory B cells were resistant to the inhibitory effects of IL-4. Finally, the ability of human tonsillar CD4+CXCR5+CCR7− T follicular helper (TFH) cells, known to be a rich source of IL-21, to induce the differentiation of autologous B cells into ISC was mediated by the production of IL-21. These findings suggest that IL-21 produced by TFH cells during the primary as well as the subsequent responses to T cell-dependent Ag makes a major contribution to eliciting and maintaining long-lived humoral immunity.