scispace - formally typeset
Search or ask a question
Institution

Yanshan University

EducationQinhuangdao, China
About: Yanshan University is a education organization based out in Qinhuangdao, China. It is known for research contribution in the topics: Microstructure & Control theory. The organization has 19544 authors who have published 16904 publications receiving 184378 citations. The organization is also known as: Yānshān dàxué.


Papers
More filters
Journal ArticleDOI
Guowen An1, Shuguang Li1, Wei Qin1, Wan Zhang1, Zhenkai Fan1, Yajie Bao1 
TL;DR: In this article, a D-shaped photonic fiber refractive index sensor with rectangular lattice based on surface plasmon resonance (SPR) is proposed and investigated, where the nanoscale gold metal film is deposited on the flat surface where it is side polished.
Abstract: We propose and investigate a D-shaped photonic fiber refractive index sensor with rectangular lattice based on surface plasmon resonance. In such sensor, the nanoscale gold metal film is deposited on the flat surface where it is side polished. Numerical results show that the average sensitivity of Au-metalized surface plasmon resonance (SPR) sensor could reach as high as 8,129 nm/refractive index unit (RIU) in the dynamic index range from 1.35 to 1.41 as well as 2,000 nm/RIU from 1.33 to 1.35. Compared to conventional Au-metalized SPR sensors, the performance of our device is obviously better, and the production process is greatly simplified.

67 citations

Journal ArticleDOI
TL;DR: In this paper, a facile method was adopted to synthesize Bi2O2CO3-modified g-C3N4 heterojunction via in situ thermal growth, which significantly enhanced photocatalytic activity is attributed to direct Z-scheme system construction.
Abstract: Developing a low-cost photocatalyst with efficient performance is significant for practical application of solar-to-fuel conversion. Here, we first adopt a facile method to synthesize Bi2O2CO3-modified g-C3N4 heterojunction via in situ thermal growth. Bi2O2CO3 nanoparticles on g-C3N4 nanosheets play a vital role in improving the photocatalytic activity of splitting water for hydrogen production. The activity of Bi2O2CO3/g-C3N4 heterojunction during 5 h reaches 965 μmol·g–1·h–1, which is much higher than that of pure g-C3N4 (337 μmol·g–1·h–1) or other modified g-C3N4 materials. The significantly enhanced photocatalytic activity is attributed to direct Z-scheme system construction, resulting in a superior charge carrier separation ability. Theoretical calculations further reveal the redistribution of charge carrier at interface between Bi2O2CO3 and g-C3N4. This work provides new direction to synthesize g-C3N4-based heterojunction with high photocatalytic performance for alleviating energy and environmental ...

67 citations

Journal ArticleDOI
TL;DR: The results suggest that plasma treatment could be a conventional strategy to perform surface modification of graphitic carbon nitride in forms of both powders and thin films, which holds broad interest not only for developing g-CN-based high-performance photocatalysts but also for constructing photoelectrochemical cells and photoelectronic devices with improved energy conversion efficiencies.
Abstract: In this study, we demonstrate that plasma treatment can be a facile and environmentally friendly approach to perform surface modification of graphitic carbon nitride (g-CN), leading to a remarkable modulation on its photocatalytic activity. The bulk properties of g-CN, including the particle size, structure, composition, and electronic band structures, have no changes after being treated by oxygen or nitrogen plasma; however, its surface composition and specific surface area exhibit remarkable differences corresponding to an oxygen functionalization induced by the plasma post-treatment. The introduced oxygen functional groups play a key role in reducing the recombination rate of the photoexcited charge carries. As a consequence, the oxygen-plasma-treated sample shows a much superior photocatalytic activity, which is about 4.2 times higher than that of the pristine g-CN for the degradation of rhodamine B (RhB) under visible light irradiation, while the activity of nitrogen-plasma-treated sample exhibits a ...

67 citations

Journal ArticleDOI
TL;DR: In this article, a novel parallel architecture of a robot's six-component force/torque sensor based on the Stewart platform is presented, which can provide the theoretical background for the optimal design and application of the sensor.
Abstract: In the design of robot’s force/torque sensors, the innovation in the structure design is one of the most important activities. The unique design for a novel parallel architecture of robot’s six-component force/torque sensor based on the Stewart platform is presented. The translational stiffness and the torsional stiffness of the sensor are defined and analyzed, which can provide the theoretical background for the optimal design and application of the sensor. The results show that the translational stiffness and the torsional stiffness of the sensor can be intuitively indicated by two spheres, respectively, so the sensor is characterized by the stiffness isotropy.

67 citations


Authors

Showing all 19693 results

NameH-indexPapersCitations
Jian Yang1421818111166
Peng Shi137137165195
Tao Zhang123277283866
David Zhang111102755118
Lei Liu98204151163
Guoliang Li8479531122
Hao Yu8198127765
Jian Yu Huang8133926599
Chen Chen7666524846
Wei Jin7192921569
Xiaoli Li6987720690
K. L. Ngai6441215505
Zhiqiang Zhang6059516675
Hak-Keung Lam5941412890
Wei Wang5822914230
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

South China University of Technology
69.4K papers, 1.2M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Northeastern University
58.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202369
2022297
20211,753
20201,486
20191,433
20181,209