scispace - formally typeset
Search or ask a question
Institution

Yanshan University

EducationQinhuangdao, China
About: Yanshan University is a education organization based out in Qinhuangdao, China. It is known for research contribution in the topics: Microstructure & Control theory. The organization has 19544 authors who have published 16904 publications receiving 184378 citations. The organization is also known as: Yānshān dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Kirkendall effect was used to obtain a honeycomb-like manganese sulfide nanocrystals (40-80 nm) and the three-dimensional sandwich structure endow the MnS/GO-NH3 with high super-capacitive performance when it was used as a supercapacitor material.
Abstract: Graphene oxide (GO) anchored porous manganese sulfide nanocrystals (MnS/GO-NH3) were obtained via a facile hydrothermal method based on the Kirkendall effect. The honeycomb-like manganese sulfide nanocrystals (40–80 nm) and the three-dimensional sandwich structure endow the MnS/GO-NH3 with high supercapacitive performance when it was used as a supercapacitor material. The MnS/GO-NH3 electrode exhibits high specific capacitance (390.8 F g−1 at 0.25 A g−1), high rate capacity (78.7% retention at 10 A g−1) and stable cycle life (81.0% retention after 2000 cycles), which are superior to those of GO anchored MnS floccules (MnS/GO) and manganese hydroxide (Mn(OH)2/GO). As a novel material for supercapacitors, the charge–discharge mechanism of the MnS/GO-NH3 composite is proposed via detailed investigation. Asymmetric supercapacitors, assembled with MnS/GO-NH3 as the positive material and activated carbon as the negative electrode, reveal a high specific capacitance (73.63 F g−1), a high energy density of 14.9 W h kg−1 at 66.5 W kg−1 and even 12.8 W h kg−1 at a high power density of 4683.5 W kg−1.

98 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent research advancements and limitations of lithium argyrodites from material to battery level material synthesis based on solid and liquid routes are summarized and the chemical and electrochemical stabilities of argyrodes towards cathode and anode materials and corresponding improvement approaches are discussed in detail.

98 citations

Journal ArticleDOI
Jiahui Bai1, Ran Wang1, Mingxi Ju1, Jingxin Zhou1, Lexin Zhang1, Tifeng Jiao1 
TL;DR: In this paper, a chemical gel with high mechanical strength was prepared by cross-linking acrylamide with N, N′-methylene-bisacrylamides and ammonium persulfate.
Abstract: Flexible sensors that can respond to multiple mechanical excitation modes and have high sensitivity are of great significance in the fields of electronic skin and health monitoring. Simulating multiple signal responses to skin such as strain and temperature remains an important challenge. Therefore, new multifunctional ion-crosslinked hydrogels with toughness and conductivity were designed and prepared in this work. A chemical gel with high mechanical strength was prepared by cross-linking acrylamide with N,N′-methylene-bisacrylamide and ammonium persulfate. In addition, in order to enhance the conductive properties of the hydrogel, Ca2+, Mg2+ and Al3+ ions were added to the hydrogel during cross-linking. The double-layer network makes this ionic hydrogel show excellent mechanical properties. Moreover, the composite hydrogel containing Ca2+ can reach a maximum stretch of 1100% and exhibits ultra-high sensitivity (S p = 10.690 MPa−1). The obtained hydrogels can successfully prepare wearable strain sensors, as well as track and monitor human motion. The present prepared multifunctional hydrogels are expected to be further expanded to intelligent health sensor materials.

98 citations

Journal ArticleDOI
TL;DR: In this paper, the ZnO/g-C3N4 nanocomposites were synthesized by a single-step and scalable synthesis method through calcining the mixture of zinc acetate and urea.

97 citations

Journal ArticleDOI
14 Feb 2020
TL;DR: The results showed that the composite hydrogels could be easily separated from the water environment, which indicated the large-scale potential application in organic catalytic degradation and wastewater treatment.
Abstract: Poly(ethylene imine) (PEI) has abundant amino groups in a macromolecular chain and can be used as a graft source for metal nanocomposites, which shows excellent ability to form stable complexes with heavy metal ions. In this work, a simple and convenient method was used to make PEI into a stable hydrogel with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysuccinimide and subsequently coprecipitate with silver nitrate solution or palladium chloride solution to form metal-loaded composite hydrogels. In addition, the characterizations of composite hydrogels were investigated by scanning electron microscopy, specific surface area tests (Brunauer-Emmett-Teller), X-ray photoelectron spectroscopy, and ultraviolet spectroscopy. The properties of composite hydrogels on the catalytic reduction of 4-nitrophenol were studied. The results showed that the composite hydrogels could be easily separated from the water environment, which indicated the large-scale potential application in organic catalytic degradation and wastewater treatment.

97 citations


Authors

Showing all 19693 results

NameH-indexPapersCitations
Jian Yang1421818111166
Peng Shi137137165195
Tao Zhang123277283866
David Zhang111102755118
Lei Liu98204151163
Guoliang Li8479531122
Hao Yu8198127765
Jian Yu Huang8133926599
Chen Chen7666524846
Wei Jin7192921569
Xiaoli Li6987720690
K. L. Ngai6441215505
Zhiqiang Zhang6059516675
Hak-Keung Lam5941412890
Wei Wang5822914230
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

South China University of Technology
69.4K papers, 1.2M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Northeastern University
58.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202369
2022297
20211,753
20201,486
20191,433
20181,209