scispace - formally typeset
Search or ask a question

Showing papers in "Analytical and Bioanalytical Chemistry in 2012"


Journal ArticleDOI
TL;DR: Hydrophilic interaction liquid chromatography (HILIC) provides an alternative approach to effectively separate small polar compounds on polar stationary phases and their applications for separations of polar compounds in complex matrices.
Abstract: Hydrophilic interaction liquid chromatography (HILIC) provides an alternative approach to effectively separate small polar compounds on polar stationary phases. The purpose of this work was to review the options for the characterization of HILIC stationary phases and their applications for separations of polar compounds in complex matrices. The characteristics of the hydrophilic stationary phase may affect and in some cases limit the choices of mobile phase composition, ion strength or buffer pH value available, since mechanisms other than hydrophilic partitioning could potentially occur. Enhancing our understanding of retention behavior in HILIC increases the scope of possible applications of liquid chromatography. One interesting option may also be to use HILIC in orthogonal and/or two-dimensional separations. Bioapplications of HILIC systems are also presented.

978 citations


Journal ArticleDOI
TL;DR: The notion that mass spectrometry has the potential to eventually retire the western blot is no longer in the realm of science fiction and major technical and conceptual developments since 2007 are focused on.
Abstract: Mass-spectrometry-based proteomics is continuing to make major contributions to the discovery of fundamental biological processes and, more recently, has also developed into an assay platform capable of measuring hundreds to thousands of proteins in any biological system. The field has progressed at an amazing rate over the past five years in terms of technology as well as the breadth and depth of applications in all areas of the life sciences. Some of the technical approaches that were at an experimental stage back then are considered the gold standard today, and the community is learning to come to grips with the volume and complexity of the data generated. The revolution in DNA/RNA sequencing technology extends the reach of proteomic research to practically any species, and the notion that mass spectrometry has the potential to eventually retire the western blot is no longer in the realm of science fiction. In this review, we focus on the major technical and conceptual developments since 2007 and illustrate these by important recent applications.

762 citations


Journal ArticleDOI
TL;DR: The limit of sensitivity in SERS is introduced in the context of single-molecule spectroscopy and the calculation of the ‘real’ enhancement factor, which illustrates the broad applications of this powerful technique.
Abstract: Surface-enhanced Raman spectroscopy (SERS) combines molecular fingerprint specificity with potential single-molecule sensitivity. Therefore, the SERS technique is an attractive tool for sensing molecules in trace amounts within the field of chemical and biochemical analytics. Since SERS is an ongoing topic, which can be illustrated by the increased annual number of publications within the last few years, this review reflects the progress and trends in SERS research in approximately the last three years. The main reason why the SERS technique has not been established as a routine analytic technique, despite its high specificity and sensitivity, is due to the low reproducibility of the SERS signal. Thus, this review is dominated by the discussion of the various concepts for generating powerful, reproducible, SERS-active surfaces. Furthermore, the limit of sensitivity in SERS is introduced in the context of single-molecule spectroscopy and the calculation of the 'real' enhancement factor. In order to shed more light onto the underlying molecular processes of SERS, the theoretical description of SERS spectra is also a growing research field and will be summarized here. In addition, the recording of SERS spectra is affected by a number of parameters, such as laser power, integration time, and analyte concentration. To benefit from synergies, SERS is combined with other methods, such as scanning probe microscopy and microfluidics, which illustrates the broad applications of this powerful technique.

706 citations


Journal ArticleDOI
TL;DR: The role, challenges, and trends in sample preparation specifically within the context of global metabolomics by liquid chromatography–mass spectrometry (LC–MS) are explored and how to improve analytical quality and metabolite coverage in metabolomic studies of biofluids, tissues, and mammalian cells is discussed.
Abstract: The choice of sample-preparation method is extremely important in metabolomic studies because it affects both the observed metabolite content and biological interpretation of the data. An ideal sample-preparation method for global metabolomics should (i) be as non-selective as possible to ensure adequate depth of metabolite coverage; (ii) be simple and fast to prevent metabolite loss and/or degradation during the preparation procedure and enable high-throughput; (iii) be reproducible; and (iv) incorporate a metabolism-quenching step to represent true metabolome composition at the time of sampling. Despite its importance, sample preparation is often an overlooked aspect of metabolomics, so the focus of this review is to explore the role, challenges, and trends in sample preparation specifically within the context of global metabolomics by liquid chromatography–mass spectrometry (LC–MS). This review will cover the most common methods including solvent precipitation and extraction, solid-phase extraction and ultrafiltration, and discuss how to improve analytical quality and metabolite coverage in metabolomic studies of biofluids, tissues, and mammalian cells. Recent developments in this field will also be critically examined, including in vivo methods, turbulent-flow chromatography, and dried blood spot sampling.

396 citations


Journal ArticleDOI
TL;DR: Recent achievements in analytical applications of electrosynthesized molecularly imprinted polymers applied as recognition elements of chemical sensors are highlighted, including present strategies of determination of different analytes as well as identification and solutions for problems encountered.
Abstract: This critical review describes a class of polymers prepared by electrochemical polymerization that employs the concept of molecular imprinting for chemical sensing. The principal focus is on both conducting and nonconducting polymers prepared by electropolymerization of electroactive functional monomers, such as pristine and derivatized pyrrole, aminophenylboronic acid, thiophene, porphyrin, aniline, phenylenediamine, phenol, and thiophenol. A critical evaluation of the literature on electrosynthesized molecularly imprinted polymers (MIPs) applied as recognition elements of chemical sensors is presented. The aim of this review is to highlight recent achievements in analytical applications of these MIPs, including present strategies of determination of different analytes as well as identification and solutions for problems encountered.

360 citations


Journal ArticleDOI
TL;DR: This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices and describes possible approaches proposed in the literature on this topic.
Abstract: This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices. In recent years, growing interest in molecularly imprinted polymers (MIPs) in the preparation of recognition elements has led researchers to design novel formats for improvement of MIP sensors. Among possible approaches proposed in the literature on this topic, we will focus on the electrosynthesis of MIPs and on less common hybrid technology (e.g. based on electrochemistry and classical MIPs, or nanotechnology). Starting from the early work reported in this field, an overview of the most innovative and successful examples will be reviewed.

309 citations


Journal ArticleDOI
TL;DR: Although the concentrations of ACE and SUC are among the highest measured for anthropogenic trace pollutants found in surface water, groundwater, and drinking water, the levels are at least three orders of magnitude lower than organoleptic threshold values, which suggests their use as virtually perfect markers for the study of the impact of wastewater on source waters and drinking waters is suggested.
Abstract: An overview is given of existing trace analytical methods for the determination of seven popular artificial sweeteners [acesulfame (ACE), aspartame, cyclamate (CYC), neotame, neohesperidine dihydrochalcone, saccharin (SAC), and sucralose (SUC)] from aqueous environmental samples. Liquid chromatography–electrospray ionization tandem mass spectrometry and liquid chromatography–electrospray ionization high-resolution mass spectrometry are the methods most widely applied, either directly or after solid-phase extraction. Limits of detection and limits of quantification down to the low nanogram per liter range can be achieved. ACE, CYC, SAC, and SUC were detected in wastewater treatment plants in high microgram per liter concentrations. Per capita loads of individual sweeteners can vary within a wide range depending on their use in different countries. Whereas CYC and SAC are usually degraded by more than 90 % during wastewater treatment, ACE and SUC pass through wastewater treatment plants mainly unchanged. This suggests their use as virtually perfect markers for the study of the impact of wastewater on source waters and drinking waters. In finished water of drinking water treatment plants using surface-water-influenced source water, ACE and SUC were detected in concentrations up to 7 and 2.4 μg/L, respectively. ACE was identified as a precursor of oxidation byproducts during ozonation, resulting in an aldehyde intermediate and acetic acid. Although the concentrations of ACE and SUC are among the highest measured for anthropogenic trace pollutants found in surface water, groundwater, and drinking water, the levels are at least three orders of magnitude lower than organoleptic threshold values. However, ecotoxicology studies are scarce and have focused on SUC. Thus, further research is needed both on identification of transformation products and on the ecotoxicological impact of artificial sweeteners and their transformation products.

287 citations


Journal ArticleDOI
TL;DR: Technical developments targeted at iTRAQ accuracy and precision, use of 4-plex over 8-plex reagents and application of iTRAZ to post-translational modification (PTM) workflows are focused on.
Abstract: The iTRAQ (isobaric tags for relative and absolute quantification) technique is widely employed in proteomic workflows requiring relative quantification. Here, we review the iTRAQ literature; in particular, we focus on iTRAQ usage in relation to other commonly used quantitative techniques e.g. stable isotope labelling in culture (SILAC), label-free methods and selected reaction monitoring (SRM). As a result, we identify several issues arising with respect to iTRAQ. Perhaps frustratingly, iTRAQ’s attractiveness has been undermined by a number of technical and analytical limitations: it may not be truly quantitative, as the changes in abundance reported will generally be underestimated. We discuss weaknesses and strengths of iTRAQ as a methodology for relative quantification in the light of this and other technical issues. We focus on technical developments targeted at iTRAQ accuracy and precision, use of 4-plex over 8-plex reagents and application of iTRAQ to post-translational modification (PTM) workflows. We also discuss iTRAQ in relation to label-free approaches, to which iTRAQ is losing ground.

281 citations


Journal ArticleDOI
TL;DR: Electrolyte-Gated OFET (EGOFET) architecture, where EGOFETs differ from OFETs, as in OECTs, in that the gate is separated from the semiconductor by an electrolyte, which allows low voltage operation compared with OfETs gated via solid dielectrics.
Abstract: Organic electronics have, over the past two decades, developed into an exciting area of research and technology to replace classic inorganic semiconductors. Organic photovoltaics, light-emitting diodes, and thin-film transistors are already well developed and are currently being commercialized for a variety of applications. More recently, organic transistors have found new applications in the field of biosensors. The progress made in this direction is the topic of this review. Various configurations are presented, with their detection principle, and illustrated by examples from the literature.

264 citations


Journal ArticleDOI
TL;DR: Serum levels of 11 protein-bound uremic toxins were increased in hemodialysis patients and could not be removed efficiently by HD due to their high protein-binding ratios.
Abstract: Cardiovascular disease (CVD) is prevalent in patients with chronic kidney disease (CKD). In hemodialysis (HD) patients, some protein-bound uremic toxins are considered to be associated with CVD. However, it is not yet known which uremic toxins are important in terms of endothelial toxicity. Serum samples were obtained from 45 HD patients before and after HD. Total and free serum concentrations of indoxyl sulfate, indoxyl glucuronide, indoleacetic acid, p-cresyl sulfate, p-cresyl glucuronide, phenyl sulfate, phenyl glucuronide, phenylacetic acid, phenylacetyl glutamine, hippuric acid, 4-ethylphenyl sulfate, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF) were simultaneously measured by liquid chromatography/electrospray ionization–mass spectrometry/mass spectrometry (LC/ESI-MS/MS). The effects of these solutes at their pre-HD mean and maximum serum concentrations on reactive oxygen species (ROS) production in human umbilical vein endothelial cells (HUVEC) were measured with a ROS probe. Serum levels of 11 of the solutes (all except 4-ethylphenyl sulfate) were significantly increased in HD patients compared to healthy subjects. All 12 solutes showed changes in their protein-binding ratios. In particular, indoxyl sulfate, p-cresyl sulfate, CMPF, and 4-ethylphenyl sulfate showed high protein-binding ratios (>95 %) and low reduction rates by HD (<35 %). Indoxyl sulfate at its mean and maximum pre-HD serum concentrations—even with 4 % albumin—stimulated ROS production in HUVEC most intensely, followed by CMPF. In conclusion, the serum levels of 11 protein-bound uremic toxins were increased in HD patients. Indoxyl sulfate, p-cresyl sulfate, and CMPF could not be removed efficiently by HD due to their high protein-binding ratios. Indoxyl sulfate most intensely induced endothelial ROS production, followed by CMPF.

222 citations


Journal ArticleDOI
TL;DR: A critical review of current use of HRMS in the environmental sciences to give an overview of the main characteristics of HR MS, its strong potential in environmental mass spectrometry and the trends observed over the last few years.
Abstract: During the last two decades, mass spectrometry (MS) has been increasingly used in the environmental sciences with the objective of investigating the presence of organic pollutants. MS has been widely coupled with chromatographic techniques, both gas chromatography (GC) and liquid chromatography (LC), because of their complementary nature when facing a broad range of organic pollutants of different polarity and volatility. A clear trend has been observed, from the very popular GC–MS with a single quadrupole mass analyser, to tandem mass spectrometry (MS–MS) and, more recently, high-resolution mass spectrometry (HRMS). For years GC has been coupled to HR magnetic sector instruments, mostly for dioxin analysis, although in the last ten years there has been growing interest in HRMS with time-of-flight (TOF) and Orbitrap mass analyzers, especially in LC–MS analysis. The increasing interest in the use of HRMS in the environmental sciences is because of its suitability for both targeted and untargeted analysis, owing to its sensitivity in full-scan acquisition mode and high mass accuracy. With the same instrument one can perform a variety of tasks: pre- and post-target analysis, retrospective analysis, discovery of metabolite and transformation products, and non-target analysis. All these functions are relevant to the environmental sciences, in which the analyst encounters thousands of different organic contaminants. Thus, wide-scope screening of environmental samples is one of the main applications of HRMS. This paper is a critical review of current use of HRMS in the environmental sciences. Needless to say, it is not the intention of the authors to summarise all contributions of HRMS in this field, as in classic descriptive reviews, but to give an overview of the main characteristics of HRMS, its strong potential in environmental mass spectrometry and the trends observed over the last few years. Most of the literature has been acquired since 2005, coinciding with the growth and popularity of HRMS in this field, with a few exceptions that deserve to be mentioned because of their relevance.

Journal ArticleDOI
TL;DR: The essential features of continuous-flow isotope-ratio mass spectrometry (IRMS) are introduced and current challenges in environmental analysis as exemplified for the isotopes of nitrogen, hydrogen, chlorine, and oxygen are highlighted.
Abstract: Compound-specific stable-isotope analysis (CSIA) has greatly facilitated assessment of sources and transformation processes of organic pollutants. Multielement isotope analysis is one of the most promising applications of CSIA because it even enables distinction of different transformation pathways. This review introduces the essential features of continuous-flow isotope-ratio mass spectrometry (IRMS) and highlights current challenges in environmental analysis as exemplified for the isotopes of nitrogen, hydrogen, chlorine, and oxygen. Strategies and recent advances to enable isotopic measurements of polar contaminants, for example pesticides or pharmaceuticals, are discussed with special emphasis on possible solutions for analysis of low concentrations of contaminants in environmental matrices. Finally, we discuss different levels of calibration and referencing and point out the urgent need for compound-specific isotope standards for gas chromatography–isotope-ratio mass spectrometry (GC–IRMS) of organic pollutants.

Journal ArticleDOI
TL;DR: In this review, published material on the potential application of different spectroscopic techniques for bioreactor monitoring is critically discussed, with particular emphasis on optical fiber technology, reported for in situ bioprocess monitoring.
Abstract: Biotechnological processes are crucial to the development of any economy striving to ensure a relevant position in future markets. The cultivation of microorganisms in bioreactors is one of the most important unit operations of biotechnological processes, and real-time monitoring of bioreactors is essential for effective bioprocess control. In this review, published material on the potential application of different spectroscopic techniques for bioreactor monitoring is critically discussed, with particular emphasis on optical fiber technology, reported for in situ bioprocess monitoring. Application examples are presented by spectroscopy type, specifically focusing on ultraviolet–visible, near-infrared, mid-infrared, Raman, and fluorescence spectroscopy. The spectra acquisition devices available and the major advantages and disadvantages of each spectroscopy are discussed. The type of information contained in the spectra and the available chemometric methods for extracting that information are also addressed, including wavelength selection, spectra pre-processing, principal component analysis, and partial least-squares. Sample handling techniques (flow and sequential injection analysis) that include transport to spectroscopic sensors for ex-situ on-line monitoring are not covered in this review.

Journal ArticleDOI
TL;DR: This research covers diverse and complementary fields, including enhancing the light emission efficiency of CL systems, the use of nanomaterials to catalyze or enhance CL/BL reactions, the study of BL proteins to elucidate the color modulation mechanism, the discovery of new BL systems, and the development of BL imaging techniques to expand the understanding of living systems.
Abstract: Chemiluminescence (CL) and bioluminescence (BL) are the detection techniques of choice for the development of highly sensitive analytical methods, from immunoassays and nucleic acid hybridization assays to whole-cell biosensors. Nevertheless, basic and applied research on CL and BL aimed at further improving their analytical performance is still very active. This research covers diverse and complementary fields, including (among others) enhancing the light emission efficiency of CL systems, the use of nanomaterials to catalyze or enhance CL/BL reactions, the study of BL proteins to elucidate the color modulation mechanism, the discovery of new BL systems, the production of thermostable BL protein mutants with altered emission spectra, the development of BL imaging techniques to expand our understanding of living systems, and the implementation of CL/BL detection in miniaturized analytical devices. In the near future, we expect even greater diffusion of CL/BL-based analytical methods, especially in portable analytical devices intended for applications ranging from environmental analysis to companion diagnostics for personalized medicine.

Journal ArticleDOI
TL;DR: A robust and sensitive targeted analysis platform for oxylipins is developed and applied broadly to study these highly bioactive compounds in relation to human disease, demonstrated by analyzing plasma samples of patients undergoing cardiac surgery.
Abstract: Oxylipins, including eicosanoids, affect a broad range of biological processes, such as the initiation and resolution of inflammation. These compounds, also referred to as lipid mediators, are (non-) enzymatically generated by oxidation of polyunsaturated fatty acids such as arachidonic acid (AA). A plethora of lipid mediators exist which makes the development of generic analytical methods challenging. Here we developed a robust and sensitive targeted analysis platform for oxylipins and applied it in a biological setting, using high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) operated in dynamic multiple reaction monitoring (dMRM). Besides the well-described AA metabolites, oxylipins derived from linoleic acid, dihomo-γ-linolenic acid, α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were included. Our comprehensive platform allows the quantitative evaluation of approximately 100 oxylipins down to low nanomolar levels. Applicability of the analytical platform was demonstrated by analyzing plasma samples of patients undergoing cardiac surgery. Altered levels of some of the oxylipins, especially in certain monohydroxy fatty acids such as 12-HETE and 12-HEPE, were observed in samples collected before and 24 h after cardiac surgery. These findings indicate that this generic oxylipin profiling platform can be applied broadly to study these highly bioactive compounds in relation to human disease.

Journal ArticleDOI
TL;DR: A novel approach for selective and ultra-sensitive multiplexed detection of Escherichia coli (non-pathogenic or pathogenic) using a lab-on-paper test strip (bioactive paper) based on intracellular enzyme (β-galactosidase) or β-glucuronidase (GUS) activity is reported.
Abstract: Rapid, sensitive, on-site detection of bacteria without a need for sophisticated equipment or skilled personnel is extremely important in clinical settings and rapid response scenarios, as well as in resource-limited settings. Here, we report a novel approach for selective and ultra-sensitive multiplexed detection of Escherichia coli (non-pathogenic or pathogenic) using a lab-on-paper test strip (bioactive paper) based on intracellular enzyme (β-galactosidase (B-GAL) or β-glucuronidase (GUS)) activity. The test strip is composed of a paper support (0.5 × 8 cm), onto which either 5-bromo-4-chloro-3-indolyl-β-d-glucuronide sodium salt (XG), chlorophenol red β-galactopyranoside (CPRG) or both and FeCl3 were entrapped using sol–gel-derived silica inks in different zones via an ink-jet printing technique. The sample was lysed and assayed via lateral flow through the FeCl3 zone to the substrate area to initiate rapid enzyme hydrolysis of the substrate, causing a change from colorless-to-blue (XG hydrolyzed by GUS, indication of nonpathogenic E. coli) and/or yellow to red-magenta (CPRG hydrolyzed by B-GAL, indication of total coliforms). Using immunomagnetic nanoparticles for selective preconcentration, the limit of detection was ~5 colony-forming units (cfu) per milliliter for E. coli O157:H7 and ~20 cfu/mL for E. coli BL21, within 30 min without cell culturing. Thus, these paper test strips could be suitable for detection of viable total coliforms and pathogens in bathing water samples. Moreover, inclusion of a culturing step allows detection of less than 1 cfu in 100 mL within 8 h, making the paper tests strips relevant for detection of multiple pathogens and total coliform bacteria in beverage and food samples.

Journal ArticleDOI
TL;DR: Emerging metabolomics will drive serum analysis, facilitate and improve the development of disease treatments, and provide great benefits for public health in the long-term.
Abstract: Metabolomics is a promising “omics” field in systems biology; its objective is comprehensive analysis of low-molecular-weight endogenous metabolites in a biological sample. It could enable mapping of perturbations of early biochemical changes in diseases and hence provide an opportunity to develop predictive biomarkers that could result in earlier intervention and provide valuable insights into the mechanisms of diseases. Because of the possible discovery of clinically relevant biomarkers, metabolomics has potential advantages that routine approaches to clinical diagnosis do not. Monitoring specific metabolite levels in serum, the most commonly used biofluid in metabolomics, has become an important way of detecting the early stages of a disease. Serum is a readily accessible and informative biofluid, making it ideal for early detection of a wide range of diseases, and analysis of serum has several advantages over analysis of other biofluids. Metabolite profiles of serum can be regarded as important indicators of physiological and pathological states and may aid understanding of the mechanism of disease occurrence and progression on the metabolic level, and provide information enabling identification of early and differential metabolic markers of disease. Analysis of these crucial metabolites in serum has become important in monitoring the state of biological organisms and is widely used for diagnosis of disease. Emerging metabolomics will drive serum analysis, facilitate and improve the development of disease treatments, and provide great benefits for public health in the long-term.

Journal ArticleDOI
TL;DR: This work has developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids, and demonstrates a full mass balance closure of all fatty acids around a traditional lipid extraction process.
Abstract: In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4–7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process.

Journal ArticleDOI
TL;DR: Biological monitoring information on UV-absorbing compounds, commonly referred as organic UV filters or sunscreen agents, in aquatic ecosystems is summarized, suggesting biomagnification in predator–prey pairs and bird–fish and fish–invertebrates.
Abstract: The purpose of this article is to summarize bio- logical monitoring information on UV-absorbing compounds, commonly referred as organic UV filters or sunscreen agents, in aquatic ecosystems. To date a limited range of species (macroinvertebrates, fish, and birds), habitats (lakes, rivers, and sea), and compounds (benzophenones and camphors) have been investigated. As a consequence there is not enough data enabling reliable understanding of the global distribution and effect of UV filters on ecosystems. Both liquid chroma- tography and gas chromatography coupled with mass spectrometry-based methods have been developed and ap- plied to the trace analysis of these pollutants in biota, enabling the required selectivity and sensitivity. As expected, the most lipophilic compounds occur most frequently with concentra- tions up to 7112 ng g �1 lipids in mussels and 3100 ng g �1 lipids (homosalate) in fish. High concentrations have also been reported for 4-methylbenzilidenecamphor (up to 1800 ng g �1 lipids) and octocrylene (2400 ng g �1 lipids). Many fewer studies have evaluated the potential bioaccumu- lation and biomagnification of these compounds in both fresh and marine water and terrestrial food webs. Estimated bio- magnification factors suggest biomagnification in predator- prey pairs, for example bird-fish and fish-invertebrates. Eco- toxicological data and preliminary environmental assessment of the risk of UV filters are also included and discussed.

Journal ArticleDOI
TL;DR: High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation.
Abstract: Clinical and forensic toxicology and doping control deal with hundreds or thousands of drugs that may cause poisoning or are abused, are illicit, or are prohibited in sports. Rapid and reliable screening for all these compounds of different chemical and pharmaceutical nature, preferably in a single analytical method, is a substantial effort for analytical toxicologists. Combined chromatography-mass spectrometry techniques with standardised reference libraries have been most commonly used for the purpose. In the last ten years, the focus has shifted from gas chromatography-mass spectrometry to liquid chromatography-mass spectrometry, because of progress in instrument technology and partly because of the polarity and low volatility of many new relevant substances. High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation. The main HRMS techniques today are time-of-flight mass spectrometry and Orbitrap Fourier-transform mass spectrometry. Both techniques enable a range of different drug-screening strategies that essentially rely on measuring a compound's or a fragment's mass with sufficiently high accuracy that its elemental composition can be determined directly. Accurate mass and isotopic pattern acts as a filter for confirming the identity of a compound or even identification of an unknown. High mass resolution is essential for improving confidence in accurate mass results in the analysis of complex biological samples. This review discusses recent applications of HRMS in analytical toxicology.

Journal ArticleDOI
TL;DR: This gold nanoparticle based dual fluorescence–colorimetric method was developed as an aptasensor to detect ampicillin using its single-stranded DNA (ssDNA) aptamer and will be a more accurate method for antibiotics in food products as it concurrently uses two detection methods: fluorescence and colorimetry.
Abstract: A gold nanoparticle based dual fluorescence–colorimetric method was developed as an aptasensor to detect ampicillin using its single-stranded DNA (ssDNA) aptamer, which was discovered by a magnetic bead-based SELEX technique. The selected aptamers, AMP4 (5′-CACGGCATGGTGGGCGTCGTG-3′), AMP17 (5′-GCGGGCGGTTGTATAGCGG-3′), and AMP18 (5′-TTAGTTGGGGTTCAGTTGG-3′), were confirmed to have high sensitivity and specificity to ampicillin (K d, AMP7 = 9.4 nM, AMP17 = 13.4 nM, and AMP18 = 9.8 nM, respectively). The 5′-fluorescein amidite (FAM)-modified aptamer was used as a dual probe for observing fluorescence differences and color changes simultaneously. The lower limits of detection for this dual method were a 2 ng/mL by fluorescence and a 10 ng/mL by colorimetry for ampicillin in the milk as well as in distilled water. Because these detection limits were below the maximum residue limit of ampicillin, this aptasensor was sensitive enough to detect antibiotics in food products, such as milk and animal tissues. In addition, this dual aptasensor will be a more accurate method for antibiotics in food products as it concurrently uses two detection methods: fluorescence and colorimetry.

Journal ArticleDOI
TL;DR: The methods presented for detection of lung cancer markers in exhaled air could be used as a potential non-invasive tool for screening and is relatively simple and inexpensive in comparison with chromatography.
Abstract: In this work, a chromatographic method for identification of volatile organic compounds was compared with canine recognition. Gas chromatography and mass spectrometry (GC–TOF MS) were used for determination of concentrations of trace gases present in human breath. The technique enables rapid determination of compounds in human breath, at the parts per billion level. Linear correlations were from 0.83–234.05 ppb, the limit of detection was the range 0.31–0.75 ppb, and precision, expressed as relative standard deviation (RSD), was less than 10.00 %. Moreover, trained dogs are able to discriminate breath samples of patients with diagnosed cancer. We found a positive correlation between dog indications and the ethyl acetate and 2-pentanone content of breath (r = 0.85 and r = 0.97, respectively). The methods presented for detection of lung cancer markers in exhaled air could be used as a potential non-invasive tool for screening. In addition, the canine method is relatively simple and inexpensive in comparison with chromatography.

Journal ArticleDOI
TL;DR: HRMS strongly competes with classical tandem mass spectrometry in the field of quantitative multiresidue methods (e.g., pesticides and veterinary drugs) and is one of the most promising tools when moving towards nontargeted approaches.
Abstract: High-resolution mass spectrometry (HRMS), which is used for residue analysis in food, has gained wider acceptance in the last few years. This development is due to the availability of more rugged, sensitive, and selective instrumentation. The benefits provided by HRMS over classical unit-mass-resolution tandem mass spectrometry are considerable. These benefits include the collection of full-scan spectra, which provides greater insight into the composition of a sample. Consequently, the analyst has the freedom to measure compounds without previous compound-specific tuning, the possibility of retrospective data analysis, and the capability of performing structural elucidations of unknown or suspected compounds. HRMS strongly competes with classical tandem mass spectrometry in the field of quantitative multiresidue methods (e.g., pesticides and veterinary drugs). It is one of the most promising tools when moving towards nontargeted approaches. Certain hardware and software issues still have to be addressed by the instrument manufacturers for it to dislodge tandem mass spectrometry from its position as the standard trace analysis tool.

Journal ArticleDOI
TL;DR: When comparing these three different assays for the measurement of MG concentrations, it is found that the N-acetyl-l-cysteine assay is the most favorable, providing an economical and robust assay without the need for the use of hazardous or expensive reagents.
Abstract: The determination of methylglyoxal (MG) concentrations in vivo is gaining increasing importance as high levels of MG are linked to various health impairments including complications of diabetes. In order to standardize the measurements of MG in body fluids, it is necessary to precisely determine the concentration of MG stock solutions used as analytical standards. The “gold standard” method for the determination of MG concentration in the millimolar range is an enzyme-catalyzed endpoint assay based on the glyoxalase I catalyzed formation of S-lactoylglutathione. However, as this assay used purified glyoxalase I enzyme, it is quite expensive. Another method uses a derivation reaction with 2,4-dinitrophenylhydrazine, but this substance is explosive and needs special handling and storage. In addition, precipitation of the product methylglyoxal-bis-2,4-dinitrophenylhydrozone during the reaction limits the reliability of this method. In this study, we have evaluated a new method of MG determination based on the previously published fast reaction between MG and N-acetyl-l-cysteine at room temperature which yields an easily detectable condensation product, N-α-acetyl-S-(1-hydroxy-2-oxo-prop-1-yl)cysteine. When comparing these three different assays for the measurement of MG concentrations, we find that the N-acetyl-l-cysteine assay is the most favorable, providing an economical and robust assay without the need for the use of hazardous or expensive reagents.

Journal ArticleDOI
TL;DR: Various oligonucleotide sequences or conformations have been utilized to synthesize silver nanoclusters with excellent fluorescence properties, and the range of applications has expanded greatly, from live cell staining and the detection of metal ions and small biomolecules to the Detection of DNA or proteins.
Abstract: In this review, we discuss the synthesis and applications of DNA-templated fluorescent silver nanoclusters in aqueous solution Various oligonucleotide sequences or conformations have been utilized to synthesize silver nanoclusters with excellent fluorescence properties The range of applications has expanded greatly, from live cell staining and the detection of metal ions and small biomolecules to the detection of DNA or proteins

Journal ArticleDOI
TL;DR: The results suggest that capillary electrophoresis-mass spectrometry based metabolome analysis could be used for DN diagnosis, through comprehensive analysis of serum metabolites with 78 diabetic patients.
Abstract: Capillary electrophoresis coupled with time-of-flight mass spectrometry was used to explore new serum biomarkers with high sensitivity and specificity for diabetic nephropathy (DN) diagnosis, through comprehensive analysis of serum metabolites with 78 diabetic patients. Multivariate analyses were used for identification of marker candidates and development of discriminative models. Of the 289 profiled metabolites, orthogonal partial least-squares discriminant analysis identified 19 metabolites that could distinguish between DN with macroalbuminuria and diabetic patients without albuminuria. These identified metabolites included creatinine, aspartic acid, γ-butyrobetaine, citrulline, symmetric dimethylarginine (SDMA), kynurenine, azelaic acid, and galactaric acid. Significant correlations between all these metabolites and urinary albumin-to-creatinine ratios (p < 0.009, Spearman's rank test) were observed. When five metabolites (including γ-butyrobetaine, SDMA, azelaic acid and two unknowns) were selected from 19 metabolites and applied for multiple logistic regression model, AUC value for diagnosing DN was 0.927 using the whole dataset, and 0.880 in a cross-validation test. In addition, when four known metabolites (aspartic acid, SDMA, azelaic acid and galactaric acid) were applied, the resulting AUC was still high at 0.844 with the whole dataset and 0.792 with cross-validation. Combination of serum metabolomics with multivariate analyses enabled accurate discrimination of DN patients. The results suggest that capillary electrophoresis-mass spectrometry based metabolome analysis could be used for DN diagnosis.

Journal ArticleDOI
TL;DR: Recent examples of the application ofqNMR for metabolomics/metabonomics studies, the characterization of biologicals such as heparin, antibodies, and vaccines, and the analysis of botanical natural products will be presented and the future directions of qNMR discussed.
Abstract: Over the last several decades, significant technical and experimental advances have made quantitative nuclear magnetic resonance (qNMR) a valuable analytical tool for quantitative measurements on a wide variety of samples. In particular, qNMR has emerged as an important method for metabolomics studies where it is used for interrogation of large sets of biological samples and the resulting spectra are treated with multivariate statistical analysis methods. In this review, recent developments in instrumentation and pulse sequences will be discussed as well as the practical considerations necessary for acquisition of quantitative NMR experiments with an emphasis on their use for bioanalysis. Recent examples of the application of qNMR for metabolomics/metabonomics studies, the characterization of biologicals such as heparin, antibodies, and vaccines, and the analysis of botanical natural products will be presented and the future directions of qNMR discussed.

Journal ArticleDOI
TL;DR: This is one of the few works related to the analysis of glyphosate in real groundwater samples and the presented data confirm that, although it has low mobility in soils, glyphosate is capable of reaching groundwater.
Abstract: Despite having been the focus of much attention from the scientific community during recent years, glyphosate is still a challenging compound from an analytical point of view because of its physicochemical properties: relatively low molecular weight, high polarity, high water solubility, low organic solvent solubility, amphoteric behaviour and ease to form metal complexes. Large efforts have been directed towards developing suitable, sensitive and robust methods for the routine analysis of this widely used herbicide. In the present work, a magnetic particle immunoassay (IA) has been evaluated for fast, reliable and accurate part-per-trillion monitoring of glyphosate in water matrixes, in combination with a new analytical method based on solid-phase extraction (SPE), followed by liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS), for the confirmatory analysis of positive samples. The magnetic particle IA has been applied to the analysis of about 140 samples of groundwater from Catalonia (NE Spain) collected during four sampling campaigns. Glyphosate was present above limit of quantification levels in 41% of the samples with concentrations as high as 2.5 μg/L and a mean concentration of 200 ng/L. Good agreement was obtained when comparing the results from IA and on-line SPE-LC-MS/MS analyses. In addition, no false negatives were obtained by the use of the rapid IA. This is one of the few works related to the analysis of glyphosate in real groundwater samples and the presented data confirm that, although it has low mobility in soils, glyphosate is capable of reaching groundwater.

Journal ArticleDOI
TL;DR: This review is to describe the analytical concepts of current direct DBS techniques and to present their advantages and disadvantages, with particular focus on automation capacity and commercial availability.
Abstract: Because of the emergence of dried blood spots (DBS) as an attractive alternative to conventional venous plasma sampling in many pharmaceutical companies and clinical laboratories, different analytical approaches have been developed to enable automated handling of DBS samples without any pretreatment. Associated with selective and sensitive MS–MS detection, these procedures give good results in the rapid identification and quantification of drugs (generally less than 3 min total run time), which is desirable because of the high throughput requirements of analytical laboratories. The objective of this review is to describe the analytical concepts of current direct DBS techniques and to present their advantages and disadvantages, with particular focus on automation capacity and commercial availability. Finally, an overview of the different biomedical applications in which these concepts could be of major interest will be presented.

Journal ArticleDOI
TL;DR: A new type of nanomaterial has been developed as antibacterial additive for food packaging applications, composed of Copper nanoparticles embedded in polylactic acid, combining the antibacterial properties of copper nanoparticles with the biodegradability of the polymer matrix.
Abstract: A new type of nanomaterial has been developed as antibacterial additive for food packaging applications. This nanocomposite is composed of copper nanoparticles embedded in polylactic acid, combining the antibacterial properties of copper nanoparticles with the biodegradability of the polymer matrix. Metal nanoparticles have been synthesised by means of laser ablation, a rising and easy route to prepare nanostructures without any capping agent in a liquid environment. As prepared, nanoparticle suspensions have been easily mixed to a polymer solution. The resulting hybrid solutions have been deposited by drop casting, thus obtaining self-standing antibacterial packages. All samples have been characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy and electro-thermal atomic absorption spectroscopy. Ion release data have been matched with bioactivity tests performed by Japanese Industrial Standard (JIS) method (JIS Z 2801:2000) against Pseudomonas spp., a very common Gram-negative microbial group able to proliferate in processed food.