scispace - formally typeset
Search or ask a question

Showing papers in "Drug Metabolism and Disposition in 2019"


Journal ArticleDOI
TL;DR: The limitations of the surrogate approach of using plasma-free drug concentration to predict free drug concentrations in tissue are discussed and an important consideration for novel therapeutic modalities since systemic exposure as a driver of pharmacologic effects may provide limited value in guiding compound optimization, selection, and advancement.
Abstract: The well accepted "free drug hypothesis" for small molecule drugs assumes that only the free (unbound) drug concentration at the therapeutic target is able to elicit pharmacological effect. Unbound (free) drug concentrations in plasma are readily measurable and are often used as surrogates for the drug concentrations at the site of pharmacological action in PKPD analysis and clinical dose projection in drug discovery. Furthermore, for permeable compounds at pharmacokinetic steady-state, the tissue free drug concentration is likely a close approximation of that in plasma. However, several factors can create and maintain dis-equilibrium between the free drug concentration in plasma and tissue leading to free drug concentration asymmetry. These factors include drug uptake and extrusion mechanisms involving uptake and efflux drug transporters, intracellular biotransformation of prodrugs, membrane receptor-mediated uptake of antibody-drug conjugates, pH gradients, unique distribution properties (covalent binders, nanoparticles), and local drug delivery (e.g. inhalation). The impact of these factors on the free drug concentrations in tissues can be represented by Kp,uu, the ratio of free drug concentration between tissue and plasma at steady state. This review will focus on situations in which tissue free drug concentrations may be different from those in plasma (e.g. Kp,uu > or SIGNIFICANCE STATEMENT This review focuses on situations in which tissue free drug concentrations may be different from those in plasma (e.g. Kp,uu > or

70 citations


Journal ArticleDOI
TL;DR: Gut bacteria metabolism is presented as a previously unrecognized elimination route of tacrolimus, potentially contributing to the low and variable tacolimus exposure after oral dosing.
Abstract: Tacrolimus exhibits low and variable drug exposure after oral dosing, but the contributing factors remain unclear. Based on our recent report showing a positive correlation between fecal abundance of Faecalibacterium prausnitzii and oral tacrolimus dose in kidney transplant patients, we tested whether F. prausnitzii and other gut abundant bacteria are capable of metabolizing tacrolimus. Incubation of F. prausnitzii with tacrolimus led to production of two compounds (the major one named M1), which was not observed upon tacrolimus incubation with hepatic microsomes. Isolation, purification, and structure elucidation using mass spectrometry and nuclear magnetic resonance spectroscopy indicated that M1 is a C-9 keto-reduction product of tacrolimus. Pharmacological activity testing using human peripheral blood mononuclear cells demonstrated that M1 is 15-fold less potent than tacrolimus as an immunosuppressant. Screening of 22 gut bacteria species revealed that most Clostridiales bacteria are extensive tacrolimus metabolizers. Tacrolimus conversion to M1 was verified in fresh stool samples from two healthy adults. M1 was also detected in the stool samples from kidney transplant recipients who had been taking tacrolimus orally. Together, this study presents gut bacteria metabolism as a previously unrecognized elimination route of tacrolimus, potentially contributing to the low and variable tacrolimus exposure after oral dosing.

69 citations


Journal ArticleDOI
TL;DR: In vitro and in vivo data suggest that BBR directly affects bacteria to alter bile acid metabolism and activate FXR signaling, providing new insights into the link between intestinal bacteria, nuclear receptor signaling, and xenobiotics.
Abstract: Intestinal bacteria play an important role in bile acid metabolism and in the regulation of multiple host metabolic pathways (e.g., lipid and glucose homeostasis) through modulation of intestinal farnesoid X receptor (FXR) activity. Here, we examined the effect of berberine (BBR), a natural plant alkaloid, on intestinal bacteria using in vitro and in vivo models. In vivo, the metabolomic response and changes in mouse intestinal bacterial communities treated with BBR (100 mg/kg) for 5 days were assessed using NMR- and mass spectrometry-based metabolomics coupled with multivariate data analysis. Short-term BBR exposure altered intestinal bacteria by reducing Clostridium cluster XIVa and IV and their bile salt hydrolase (BSH) activity, which resulted in the accumulation of taurocholic acid (TCA). The accumulation of TCA was associated with activation of intestinal FXR, which can mediate bile acid, lipid, and glucose metabolism. In vitro, isolated mouse cecal bacteria were incubated with three doses of BBR (0.1, 1, and 10 mg/ml) for 4 hours in an anaerobic chamber. NMR-based metabolomics combined with flow cytometry was used to evaluate the direct physiologic and metabolic effect of BBR on the bacteria. In vitro, BBR exposure not only altered bacterial physiology but also changed bacterial community composition and function, especially reducing BSH-expressing bacteria like Clostridium spp. These data suggest that BBR directly affects bacteria to alter bile acid metabolism and activate FXR signaling. These data provide new insights into the link between intestinal bacteria, nuclear receptor signaling, and xenobiotics.

63 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on nontarget-related factors influencing the disposition and pharmacokinetics (PK) of monoclonal antibodies and peptides in the United States market.
Abstract: Monoclonal antibodies (mAbs) and peptides are an important class of therapeutic modalities that have brought improved health outcomes in areas with limited therapeutic optionality. Presently, there more than 90 mAb and peptide therapeutics on the United States market, with over 600 more in various clinical stages of development in a broad array of therapeutic areas, including diabetes, autoimmune disorders, oncology, neuroscience, and cardiovascular and infectious diseases. Notwithstanding this potential, there is high clinical rate of attrition, with approximately 10% reaching patients. A major contributor to the failure of the molecules is often times an incomplete or poor understanding of the pharmacokinetics (PK) and disposition profiles leading to limited or diminished efficacy. Increased and thorough characterization efforts directed at disseminating mechanisms influencing the PK and disposition of mAbs and peptides can aid in improving the design for their intended pharmacological activity, and thereby their clinical success. The PK and disposition factors for mAbs and peptides are broadly influenced by target-mediated drug disposition and nontarget-related clearance mechanisms related to the interplay between the relationship of the structure and physiochemical properties of mAbs and peptides with physiologic processes. This review focuses on nontarget-related factors influencing the disposition and PK of mAbs and peptides. Contemporary considerations around the increasing in silico approaches to identify nontarget-related molecule limitations and enhancing the druggability of mAbs and peptides, including parenteral and nonparenteral delivery strategies that are geared toward improving patient experience and compliance, are also discussed.

62 citations


Journal ArticleDOI
TL;DR: All drugs found to be sensitive substrates or strong inhibitors of enzymes or transporters were among oncology or antiviral treatments, suggesting a serious risk of DDIs in these patient populations for whom effective therapy is already complex because of polytherapy.
Abstract: Pharmacokinetic-based drug-drug interaction (DDI) data for drugs approved by the U.S. Food and Drug Administration in 2017 (N = 34) were analyzed using the University of Washington Drug Interaction Database. The mechanisms and clinical relevance of these interactions were characterized based on information from new drug application reviews. CYP3A inhibition and induction explained most of the observed drug interactions (new drugs as victims or as perpetrators), and transporters mediated about half of all DDIs, alone or with enzymes. Organic anion transporting polypeptide (OATP)1B1/1B3 played a significant role, mediating more than half of the drug interactions with area under the time-plasma curve (AUC) changes ≥5-fold. As victims, five new drugs were identified as sensitive substrates: abemeciclib, midostaurin, and neratinib for CYP3A and glecaprevir and voxilaprevir for OATP1B1/1B3. As perpetrators, three drugs were considered strong inhibitors: ribociclib for CYP3A, glecaprevir/pibrentasvir for OATP1B1/1B3, and sofosbuvir/velpatasvir/voxilaprevir for OATP1B1/1B3 and breast cancer resistance protein. No strong inducer of enzymes or transporters was identified. DDIs with AUC changes ≥5-fold and almost all DDIs with AUC changes 2- to 5-fold had dose recommendations in their respective drug labels. A small fraction of DDIs with exposure changes <2-fold had a labeling impact, mostly related to drugs with narrow therapeutic indices. As with drugs approved in recent years, all drugs found to be sensitive substrates or strong inhibitors of enzymes or transporters were among oncology or antiviral treatments, suggesting a serious risk of DDIs in these patient populations for whom effective therapy is already complex because of polytherapy.

61 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated whether human serum albumin (HSA) in suspended human hepatocytes would affect the uptake clearance of anionic drugs with high binding to HSA and improve the extrapolation of in vivo hepatic clearance from in vitro uptake clearance by the hepatocytes via the “albumin-mediated” hepatic uptake mechanism.
Abstract: We investigated whether human serum albumin (HSA) in suspended human hepatocytes would affect the uptake clearance of anionic drugs with high binding to HSA and improve the extrapolation of in vivo hepatic clearance from in vitro uptake clearance by the hepatocytes via the “albumin-mediated” hepatic uptake mechanism. The uptake clearances for total forms (PSinf) and for unbound forms (PSu,inf) of 11 anionic drugs [all of which were organic anion-transporting polypeptide (OATP) substrates] were determined with suspended human hepatocytes in varying concentrations of HSA. The fraction of unbound drugs (fu) was determined using an equilibrium dialysis at the various HSA concentrations. The PSinf values decreased with increasing concentrations of HSA, whereas the unbound uptake clearances (PSu,inf(+) = PSinf/ fu) in the presence of HSA increased substantially, thus demonstrating the “albumin-mediated” hepatic uptake mechanism. The relationships between PSinf and HSA concentration were well described by the previously proposed facilitated-dissociation model, in which the drug–albumin complex interacts with the cell surface, enhancing the dissociation of the complex and providing unbound drug for hepatic uptake. Furthermore, the PSu,inf (+) values in in vivo conditions (at 5% HSA) were predicted from those obtained in isolated hepatocytes on the basis of the facilitated-dissociation model, revealing compatibility with the overall hepatic intrinsic clearance in vivo. We conclude that the “facilitated-dissociation” model is useful for describing the “albumin-mediated” hepatic uptake phenomenon of OATP drugs and to predict hepatic uptake clearance in vivo.

52 citations


Journal ArticleDOI
TL;DR: Cross-species and sex-dependent protein abundance data are important for animal to human scaling of drug clearance as well as for mechanistic understanding of kidney physiology and derisking of kidney toxicity for new therapeutic candidates in drug development.
Abstract: Limited understanding of species differences in kidney transporters is a critical knowledge gap for prediction of drug-induced acute kidney injury, drug interaction, and pharmacokinetics in humans. Here, we report protein abundance data of 19 transporters in the kidney cortex across five species (human, monkey, dog, rat, and mouse). In general, the abundance of all of the 19 membrane transporters was higher in preclinical species compared with human except for multidrug resistance protein 1 (MDR1), organic cation transporter (OCT) 3, and OCTN1. In nonhuman primate, the total abundance of 12 transporters for which absolute data were available was 2.1-fold higher (P = 0.025) relative to human but the percentage of distribution of these transporters was identical in both species. Multidrug resistance-associated protein (MRP) 4, OCTN2, organic anion transporter (OAT) 2, sodium/potassium-transporting ATPase, MRP3, SGLT2, OAT1, MRP1, MDR1, and OCT2 were expressed differently with cross-species variabilities of 8.2-, 7.4-, 6.1-, 5.9-, 5.4-, 5.2-, 4.1-, 3.3-, and 2.8-fold, respectively. Sex differences were only significant in rodents and dog. High protein-protein correlation was observed in OAT1 versus MRP2/MRP4 as well as OCT2 versus MATE1 in human and monkey. The cross-species and sex-dependent protein abundance data are important for animal to human scaling of drug clearance as well as for mechanistic understanding of kidney physiology and derisking of kidney toxicity for new therapeutic candidates in drug development.

51 citations


Journal ArticleDOI
TL;DR: Low unbound Km values and increased intrinsic clearance values were seen in the plasma incubations for the highly bound compounds, supporting the new hypothesis and mitigating the IVIVE underprediction previously seen for highly bound transporter substrates.
Abstract: Accurately predicting hepatic clearance is an integral part of the drug-development process, and yet current in vitro to in vivo (IVIVE) extrapolation methods yield poor predictions, particularly for highly protein-bound transporter substrates. Explanations for error include inaccuracies in protein-binding measurements and the lack of recognition of protein-facilitated uptake, where both unbound and bound drug may be cleared, violating the principles of the widely accepted free drug theory. A new explanation for protein-facilitated uptake is proposed here, called a transporter-induced protein binding shift. High-affinity binding to cell-membrane proteins may change the equilibrium of the nonspecific binding between drugs and plasma proteins, leading to greater cellular uptake and clearance than currently predicted. The uptake of two lower protein-binding organic anion transporting polypeptide substrates (pravastatin and rosuvastatin) and two higher binding substrates (atorvastatin and pitavastatin) were measured in rat hepatocytes in incubations with protein-free buffer versus 100% plasma. Decreased unbound Km values and increased intrinsic clearance values were seen in the plasma incubations for the highly bound compounds, supporting the new hypothesis and mitigating the IVIVE underprediction previously seen for highly bound transporter substrates.

43 citations


Journal ArticleDOI
TL;DR: This review will examine some specific contributors to the ADME processes in human neonates, as well as what is currently understood about the drivers for their maturation.
Abstract: A thorough knowledge of the newborn (age, birth to 1 month postpartum) infant's gastrointestinal tract (GIT) is critical to the evaluation of the absorption, distribution, metabolism, and excretion (ADME) of orally administered drugs in this population. Developmental changes in the GIT during the newborn period are important for nutrient uptake as well as the disposition of orally administered medications. Some aspects of gastrointestinal function do not mature until driven by increased dietary complexity and nutritional demands later in the postnatal period. The functionalities present at birth, and subsequent maturation, can also impact the ADME parameters of orally administered compounds. This review will examine some specific contributors to the ADME processes in human neonates, as well as what is currently understood about the drivers for their maturation. Key species differences will be highlighted, with a focus on laboratory animals used in juvenile toxicity studies. Because of the gaps and inconsistencies in our knowledge, we will also highlight areas where additional study is warranted to better inform the appropriate use of medicines specifically intended for neonates.

42 citations


Journal ArticleDOI
TL;DR: Acalabrutinib’s highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.
Abstract: Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in

38 citations


Journal ArticleDOI
TL;DR: Results show that the prediction of brain distribution based on physicochemical properties of a drug can be misleading, especially for compounds subject to extensive efflux transport, and informs the choice of EGFR inhibitors.
Abstract: Tyrosine kinase inhibitors that target the epidermal growth factor receptor (EGFR) have had success in treating EGFR-positive tumors, including non-small-cell lung cancer (NSCLC). However, developing EGFR inhibitors that can be delivered to the brain remains a challenge. To identify optimal compounds for brain delivery, eight EGFR inhibitors [afatinib, 6-[4-[(4-ethylpiperazin-1-yl)methyl]phenyl]-N-(1-phenylethyl)-7H-pyrrolo[2,3-day]pyrimidin-4-amine (AEE788), [4-(3-chloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl] (2R)-2,4-dimethylpiperazine-1-carboxylate (AZD3759), erlotinib, dacomitinib, gefitinib, osimertinib, and vandetanib] were evaluated for distributional kinetics using cassette dosing with the ultimate goal of understanding the brain penetrability of compounds that share the same molecular target in an important oncogenic signaling pathway for both primary brain tumors (glioblastoma) and brain metastases (e.g., NSCLC). Cassette dosing was validated by comparing the brain-to-plasma ratios obtained from cassette-dosing to discrete-dosing studies. The brain-to-blood partition coefficients (Kp,brain) were calculated following cassette dosing of the eight EGFR inhibitors. The comparison of Kp,brain in wild-type and transporter-deficient mice confirmed that two major efflux transporters at the blood-brain barrier (BBB), P-glycoprotein and breast cancer resistance protein, play a crucial role in the brain distribution of seven out of eight EGFR inhibitors. Results show that the prediction of brain distribution based on physicochemical properties of a drug can be misleading, especially for compounds subject to extensive efflux transport. Moreover, this study informs the choice of EGFR inhibitors, i.e., determining BBB permeability combined with a known target potency, that may be effective in future clinical trials for brain tumors.

Journal ArticleDOI
TL;DR: The study highlights that the ontogeny-based age-dependent fractional contribution (fm) of individual drug-metabolizing enzymes has better potential in prediction of drug-drug interactions and the effect of genetic polymorphisms in the pediatric population.
Abstract: Cytosolic sulfotransferases (SULTs), including SULT1A, SULT1B, SULT1E, and SULT2A isoforms, play noteworthy roles in xenobiotic and endobiotic metabolism. We quantified the protein abundances of SULT1A1, SULT1A3, SULT1B1, and SULT2A1 in human liver cytosol samples (n = 194) by liquid chromatography-tandem mass spectrometry proteomics. The data were analyzed for their associations by age, sex, genotype, and ethnicity of the donors. SULT1A1, SULT1B1, and SULT2A1 showed significant age-dependent protein abundance, whereas SULT1A3 was invariable across 0-70 years. The respective mean abundances of SULT1A1, SULT1B1, and SULT2A1 in neonatal samples was 24%, 19%, and 38% of the adult levels. Interestingly, unlike UDP-glucuronosyltransferases and cytochrome P450 enzymes, SULT1A1 and SULT2A1 showed the highest abundance during early childhood (1 to <6 years), which gradually decreased by approx. 40% in adolescents and adults. SULT1A3 and SULT1B1 abundances were significantly lower in African Americans compared with Caucasians. Multiple linear regression analysis further confirmed the association of SULT abundances by age, ethnicity, and genotype. To demonstrate clinical application of the characteristic SULT ontogeny profiles, we developed and validated a proteomics-informed physiologically based pharmacokinetic model of acetaminophen. The latter confirmed the higher fractional contribution of sulfation over glucuronidation in the metabolism of acetaminophen in children. The study thus highlights that the ontogeny-based age-dependent fractional contribution (fm) of individual drug-metabolizing enzymes has better potential in prediction of drug-drug interactions and the effect of genetic polymorphisms in the pediatric population.

Journal ArticleDOI
Keith Riccardi1, David A. Tess1, Jian Lin1, Roshan Patel1, Sangwoo Ryu1, Karen Atkinson1, Li Di1, Rui Li1 
TL;DR: The method offers an alternative approach to more accurately predict human hepatic clearance when multiple complex mechanisms are involved and is the first time that multiple compounds result in good in vitro–in vivo extrapolation using an entirely “bottom-up” approach without any empirical scaling factor when transporter-mediated clearance is involved.
Abstract: The accurate prediction of human pharmacokinetics is critically important in modern drug discovery since it drives both pharmacological and toxicological effects. Although significant progress has been made in predicting drug disposition by hepatic drug-metabolizing enzymes, predicting transporter-mediated clearance is still highly uncertain. Furthermore, different approaches are often used to predict clearance with and without transporter involvement, hence the major clearance pathway for a compound must first be determined to know which approach to use. As a result of these challenges, a novel unified method has been developed using cryopreserved suspended human hepatocytes to predict human hepatic clearance for both enzyme- and transporter-mediated mechanisms. This method hypothesizes that, once in vitro metabolic stability is scaled by partition coefficients between hepatocytes and buffer with 4% bovine serum albumin, in vivo clearance can be better predicted. With this method, good in vitro-in vivo correlation of human hepatic clearance has been obtained for a set of 32 structurally diverse compounds, including such transporters as organic anion-transporting polypeptide substrates. The clearance predictions for most compounds are within 3-fold of observed values. This is the first time that multiple compounds result in good in vitro-in vivo extrapolation using an entirely "bottom-up" approach without any empirical scaling factor when transporter-mediated clearance is involved. Potential exceptions are compounds with significant biliary and/or extra-hepatic clearance. The method offers an alternative approach to more accurately predict human hepatic clearance when multiple complex mechanisms are involved.

Journal ArticleDOI
TL;DR: In urine, all metabolites identified in tissues were observed, consistent with both endo- and exonuclease-mediated metabolism and urinary excretion being the major elimination pathway for volanesorsen and its metabolites.
Abstract: Volanesorsen (previously known as ISIS 304801) is a 20-nucleotide partially 2'-O-(2-methoxyethyl) (2'-MOE)-modified antisense oligonucleotide (ASO) gapmer, which was recently approved in the European Union as a novel, first-in-class treatment in the reduction of triglyceride levels in patients with familial chylomicronemia syndrome. We characterized the absorption, distribution, metabolism, and excretion characteristics of volanesorsen in mice, rats, monkeys, and humans, in either radiolabeled or nonradiolabeled studies. This also included the characterization of all of the observed ASO metabolite species excreted in urine. Volanesorsen is highly bound to plasma proteins that are similar in mice, monkeys, and humans. In all species, plasma concentrations declined in a multiphasic fashion, characterized by a relatively fast initial distribution phase and then a much slower terminal elimination phase following subcutaneous bolus administration. The plasma metabolite profiles of volanesorsen are similar across species, with volanesorsen as the major component. Various shortened oligonucleotide metabolites (5-19 nucleotides long) were identified in tissues in the multiple-dose mouse and monkey studies, but fewer in the [3H]-volanesorsen rat study, likely due to a lower accumulation of metabolites following a single dose in rats. In urine, all metabolites identified in tissues were observed, consistent with both endo- and exonuclease-mediated metabolism and urinary excretion being the major elimination pathway for volanesorsen and its metabolites. SIGNIFICANCE STATEMENT: We characterized the absorption, distribution, metabolism, and excretion (ADME) of volanesorsen, a partially 2'-MOE-modified antisense oligonucleotide, from mouse to man utilizing novel extraction and quantitation techniques in samples collected from preclinical toxicology studies, a 3H rat ADME study, and a phase 1 clinical trial.

Journal ArticleDOI
Makiko Yamada1, Jeanne Mendell1, Hideo Takakusa1, Takako Shimizu1, Osamu Ando1 
TL;DR: Low urinary excretion of esxerenone suggested that the plasma exposure of esaxerenone was not affected by renal dysfunction, and multiple elimination pathways including oxidation, glucuronidation, and hydrolysis, and the low contribution of transporters, indicated limited drug-drug interaction potential.
Abstract: Esaxerenone (CS-3150) is a novel, nonsteroidal, selective mineralocorticoid receptor blocker. The absorption, metabolism, distribution, and excretion of esaxerenone were assessed in in vitro studies and in a clinical study, where [14C]esaxerenone (150 μCi/20 mg) was administered orally to six healthy male subjects. The plasma concentrations of esaxerenone and its metabolites (M4, M11, and M1) were measured using liquid chromatography-tandem mass spectrometry. The recovery of radioactivity was 92.5%, with 38.5% and 54.0% excreted in the urine and feces, respectively. The half-life of radioactivity in blood and plasma was approximately 30 hours, similar to that of the unchanged form in plasma. The blood-to-plasma ratio was 0.628, demonstrating low partitioning to blood components. In plasma, esaxerenone was the most abundant moiety (40.8%), followed by O-glucuronide (21.4%; M4), acyl-glucuronide of amide-bond hydrolysate (8.0%; M11), and the deshydroxyethyl form (1.7%; M1). In vitro studies showed that esaxerenone was a substrate of CYP3A and multiple UDP-glucuronosyltransferase isoforms. Oxidation contributed approximately 30% to its clearance, as indicated by the excretion ratio of oxidized metabolites into urine and feces. Caco-2 studies showed that esaxerenone was a substrate of P-glycoprotein and breast cancer resistance protein; however, the excretion ratios of the unchanged form in the feces and urine were 18.7% and 1.6%, respectively, indicating that these transporters were not important for the absorption and elimination of esaxerenone. Low urinary excretion of esaxerenone suggested that the plasma exposure of esaxerenone was not affected by renal dysfunction. Multiple elimination pathways including oxidation, glucuronidation, and hydrolysis, and the low contribution of transporters, indicated limited drug-drug interaction potential.

Journal ArticleDOI
TL;DR: This is the first systematic analysis incorporating absolute quantification methodology to determine region-specific intestinal transporter expression and enables assignment of the regional-specific expression, absolute transporter abundances, interindividual variability, and other associated scaling factors to healthy Caucasian populations within PBPK models.
Abstract: The aim of this study was to derive region-specific transporter expression data suitable for in vitro-to-in vivo extrapolation (IVIVE) within a physiologically based pharmacokinetic (PBPK) modeling framework. A meta-analysis was performed whereby literary sources reporting region-specific transporter expression obtained via absolute and relative quantification approaches were considered in healthy adult Caucasian individuals. Furthermore, intestinal total membrane protein yield was calculated to enable mechanistic IVIVE via absolute transporter abundances. Where required, authors were contacted for additional information. A refined database was constructed where samples were excluded based on quantification in, non-Caucasian subjects, disease tissue, subjects 2-fold higher expression in other regions compared with the proximal jejunum. This is the first systematic analysis incorporating absolute quantification methodology to determine region-specific intestinal transporter expression. It is expected to be beneficial for mechanistic transporter IVIVE in healthy adult Caucasians. SIGNIFICANCE STATEMENT: Given the burgeoning reports of absolute transporter abundances in the human intestine, the incorporation of such information into mechanistic IVIVE-PBPK models could offer a distinct advantage in facilitating the robust assessment of the impact of gut transporters on drug disposition. The systematic and formal assessment via a literature meta-analysis described herein, enables assignment of the regional-specific expression, absolute transporter abundances, interindividual variability, and other associated scaling factors to healthy Caucasian populations within PBPK models. The resulting values are available to incorporate into PBPK models, and offer a verifiable account describing intestinal transporter expression within PBPK models for persons wishing to utilize them. Furthermore, these data facilitate the development of appropriate IVIVE scaling strategies using absolute transporter abundances.

Journal ArticleDOI
TL;DR: It is concluded that intestinal OATP2B1 is a determinant of oral fexofenadine absorption, as well as a target for fruit juice interactions, and the utility of the Slco2b1 KO mouse model for defining mechanisms of drug disposition at the intersection of in vitro and clinical pharmacology.
Abstract: Organic anion transporting polypeptide 2B1 (OATP2B1) is a widely expressed membrane transporter with diverse substrate specificity. In vitro and clinical studies suggest a role for intestinal OATP2B1 in the oral absorption of medications. Moreover, OATP2B1 is highly expressed in hepatocytes where it is thought to promote liver drug clearance. But until now, a shortcoming of studies implicating OATP2B1 in drug disposition has been a lack of in vivo models. Here, we report the development of a mouse model with targeted, global disruption of the Slco2b1 gene (KO) for examining the disposition of two confirmed mOATP2B1 substrates, namely fexofenadine and rosuvastatin. The plasma pharmacokinetics of intravenously administered fexofenadine was not different between KO and wildtype (WT) mice. However, after oral fexofenadine administration, KO mice had 70% and 41% lower maximal plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC0-last) than WT mice, respectively. In WT mice, co-administration of fexofenadine with grapefruit juice (GFJ) or apple juice (AJ) was associated with reduced Cmax by 80% and 88%, respectively, while the AUC0-last was lower by 35% and 70%, respectively. In KO mice, AJ co-administration reduced oral fexofenadine Cmax and AUC0-last by 67% and 59%, respectively, while GFJ had no effects. Intravenous and oral rosuvastatin pharmacokinetics were similar among WT and KO mice. We conclude that intestinal OATP2B1 is a determinant of oral fexofenadine absorption, as well as a target for fruit juice interactions. OATP2B1 does not significantly influence rosuvastatin disposition in mice. SIGNIFICANCE STATEMENT A novel mouse model with targeted disruption of the Slco2b1 gene revealed that OATP2B1 is a determinant of the oral absorption but not systemic disposition of fexofenadine, as well as a target of fruit juice interactions. Rosuvastatin oral and intravenous pharmacokinetics were not dependent on OATP2B1. These findings support the utility of the Slco2b1 knockout mice model for defining mechanisms of drug disposition at the intersection of in vitro and clinical pharmacology.

Journal ArticleDOI
TL;DR: If the transporters measured in the plasma membrane are functional and the PMA in SH is representative of that in LT, these data suggest that SH, PH, and SCH will result in equal prediction of hepatic uptake clearance of drugs mediated by thetransporters, however, SCH will predict higher sinusoidal efflux and biliary clearance of Drugs if the change in PMA is not taken into consideration.
Abstract: Suspended (SH), plated (PH), and sandwich-cultured hepatocytes (SCH) are commonly used models to predict in vivo transporter-mediated hepatic uptake (SH or PH) or biliary (SCH) clearance of drugs. When doing so, the total and the plasma membrane abundance (PMA) of transporter are assumed not to differ between hepatocytes and liver tissue (LT). This assumption has never been tested. In this study, we tested this assumption by measuring the total and PMA of the transporters in human hepatocyte models versus LT (total only) from which they were isolated. Total abundance of OATP1B1/2B1/1B3, OCT1, and OAT2 was not significantly different between the hepatocytes and LT. The same was true for the PMA of these transporters across the hepatocyte models. In contrast, total abundance of the sinusoidal efflux transporter, MRP3, and the canalicular efflux transporters, MRP2 and P-gp, was significantly greater (P

Journal ArticleDOI
TL;DR: It is suggested that the interaction risk may be underestimated unless specific assay protocols are modified to include an additional incubation step that allows the test drug to accumulate inside the cells, and adding this step is particularly important for large and hydrophobic drug molecules.
Abstract: Preincubation of a drug transporter with its inhibitor in a cell-based assay may result in the apparent enhancement of the inhibitory potency. Currently, limited data are available on potentiation of transporter inhibition by preincubation (PTIP) for clinically relevant solute-carrier transporters other than OATP1B1 and OATP1B3. Therefore, PTIP was examined systematically using OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, and MATE2-K cell lines. IC50 values of 30 inhibitors were determined with or without 3 hours of preincubation, and compounds with a PTIP ≥2.5× were further characterized by assessing the time course of transport inhibition potency and cellular concentration. For each compound, correlations were calculated between highest observed PTIP and physicochemical properties. PTIP was prevalent among organic cation transporters (OCTs) and organic anion-transporting polypeptides (OATPs) but not among organic anion transporters (OATs) or multidrug and toxin extrusion transporters (MATEs), and most instances of PTIP persisted after controlling for toxicity and nonspecific binding. Occasionally, preincubation in excess of 2 hours was required to attain full inhibitory potency. For four drugs examined, preincubation had the potential to change the in vitro drug-drug interaction risk prediction from "no risk" to "risk" on the basis of current regulatory criteria. Molecular weight and LogD7.4, as well as the ratio of passive cellular accumulation and cellular uptake rate correlated with PTIP; thus, low cellular permeation and a slow build-up of unbound intracellular inhibitor concentration may contribute to PTIP. Taken together, our data suggest that PTIP is partly determined by the physicochemical properties of the perpetrator drug, and preincubation may affect the in vitro predicted drug-drug interaction risk for OCTs as well as OATPs. SIGNIFICANCE STATEMENT: During the development of a novel pharmaceutical drug, in vitro studies are conducted to assess the risk of potential adverse interactions between existing medications a patient may already be taking and the novel compound. The exact way these in vitro assays are performed may influence the outcome of risk assessment. Here we suggest that the interaction risk may be underestimated unless specific assay protocols are modified to include an additional incubation step that allows the test drug to accumulate inside the cells, and demonstrate that adding this step is particularly important for large and hydrophobic drug molecules.

Journal ArticleDOI
TL;DR: Intermediary metabolism in the intestinal microbiome was necessary for PBDE-mediated decreases in branched-chain and aromatic amino acid metabolites, including 3-indolepropionic acid, a tryptophan metabolite recently shown to be protective against inflammation and diabetes.
Abstract: Polybrominated diphenyl ethers (PBDEs) are persistent environmental toxicants associated with increased risk for metabolic syndrome. Intermediary metabolism is influenced by the intestinal microbiome. To test the hypothesis that PBDEs reduce host-beneficial intermediary metabolites in an intestinal microbiome-dependent manner, 9-week old male conventional (CV) and germ-free (GF) C57BL/6 mice were orally gavaged once daily with vehicle, BDE-47, or BDE-99 (100 μmol/kg) for 4 days. Intestinal microbiome (16S rDNA sequencing), liver transcriptome (RNA-Seq), and intermediary metabolites in serum, liver, as well as small and large intestinal contents (SIC and LIC; LC-MS) were examined. Changes in intermediary metabolite abundances in serum, liver, and SIC, were observed under basal conditions (CV vs. GF mice) and by PBDE exposure. PBDEs altered the largest number of metabolites in the LIC; most were regulated by PBDEs in GF conditions. Importantly, intestinal microbiome was necessary for PBDE-mediated decreases in branched-chain and aromatic amino acid metabolites, including 3-indolepropionic acid, a tryptophan metabolite recently shown to be protective against inflammation and diabetes. Gene-metabolite networks revealed a positive association between the hepatic glycan synthesis gene α-1,6-mannosyltransferase (Alg12) mRNA and mannose, which are important for protein glycosylation. Glycome changes have been observed in patients with metabolic syndrome. In LIC of CV mice, 23 bacterial taxa were regulated by PBDEs. Correlations of certain taxa with distinct serum metabolites further highlight a modulatory role of the microbiome in mediating PBDE effects. In summary, PBDEs impact intermediary metabolism in an intestinal microbiome-dependent manner, suggesting that dysbiosis may contribute to PBDE-mediated toxicities that include metabolic syndrome.

Journal ArticleDOI
TL;DR: Results indicate that in vitro efflux data can be used to accurately predict the degree of brain penetration across species within the context of the proposed physiologically based pharmacokinetic framework.
Abstract: Understanding the quantitative implications of P-glycoprotein and breast cancer resistance protein efflux is a key hurdle in the design of effective, centrally acting or centrally restricted therapeutics. Previously, a comprehensive physiologically based pharmacokinetic model was developed to describe the in vivo unbound brain-to-plasma concentration ratio as a function of efflux activity measured in vitro. In the present work, the predictive utility of this framework was examined through application to in vitro and in vivo data generated on 133 unique compounds across three preclinical species. Two approaches were examined for the scaling of efflux activity to in vivo, namely relative expression as determined by independent proteomics measurements and relative activity as determined via fitting the in vivo neuropharmacokinetic data. The results with both approaches indicate that in vitro efflux data can be used to accurately predict the degree of brain penetration across species within the context of the proposed physiologically based pharmacokinetic framework.

Journal ArticleDOI
TL;DR: The full pH profile and corresponding volume fractions of the endo-/lysosomal system in plated rat hepatocytes are determined, enabling a more accurate in silico prediction of the extent of lysosomal trapping based only on pKa values as input, allowing early predictions even prior to chemical synthesis.
Abstract: Lysosomal sequestration may affect the pharmacokinetics, efficacy, and safety of new basic lipophilic drug candidates potentially impacting their intracellular concentrations and tissue distribution. It may also be involved in drug-drug interactions, drug resistance, and phospholipidosis. However, currently there are no assays to evaluate the lysosomotropic behavior of compounds in a setting fully meeting the needs of drug discovery. We have, therefore, integrated a set of methods to reliably rank order, quantify, and calculate the extent of lysosomal sequestration in rat hepatocytes. An indirect fluorescence-based assay monitors the displacement of the fluorescence probe LysoTracker Red by test compounds. Using a lysosomal-specific evaluation algorithm allows one to generate IC50 values at lower than previously reported concentrations. The concentration range directly agrees with the concentration dependency of the lysosomal drug content itself directly quantified by liquid chromatography–tandem mass spectrometry and thus permits a quantitative link between the indirect and the direct trapping assay. Furthermore, we have determined the full pH profile and corresponding volume fractions of the endo-/lysosomal system in plated rat hepatocytes, enabling a more accurate in silico prediction of the extent of lysosomal trapping based only on pKa values as input, allowing early predictions even prior to chemical synthesis. The concentration dependency—i.e., the saturability of the trapping—can then be determined by the IC50 values generated in vitro. Thereby, a more quantitative assessment of the susceptibility of basic lipophilic compounds for lysosomal trapping is possible.

Journal ArticleDOI
TL;DR: In this study, in vitro inhibitory effects of the individual major cannabinoids and metabolites ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), 11-nor-THC-carboxylic acid, and 11-hydroxy- THC on CES1 activity were investigated.
Abstract: The escalating use of medical cannabis and significant recreational use of cannabis in recent years has led to a higher potential for metabolic interactions between cannabis or one or more of its components and concurrently used medications. Although there have been a significant number of in vitro and in vivo assessments of the effects of cannabis on cytochrome P450 and UDP-glucuronosyltransferase enzyme systems, there is limited information regarding the effects of cannabis on the major hepatic esterase, carboxylesterase 1 (CES1). In this study, we investigated the in vitro inhibitory effects of the individual major cannabinoids and metabolites ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), 11-nor-THC-carboxylic acid, and 11-hydroxy-THC on CES1 activity. S9 fractions from human embryonic kidney 293 cells stably expressing CES1 were used in the assessment of cannabinoid inhibitory effects. THC, CBD, and CBN each exhibited substantial inhibitory potency, and were further studied to determine their mechanism of inhibition and kinetic parameters. The inhibition of CES1 by THC, CBD, and CBN was reversible and appears to proceed through a mixed competitive-noncompetitive mechanism. The inhibition constant (Ki) values for THC, CBD, and CBN inhibition were 0.541, 0.974, and 0.263 µM (0.170, 0.306, and 0.0817 µg/ml), respectively. Inhibition potency was increased when THC, CBD, and CBN were combined. Compared with the potential unbound plasma concentrations attainable clinically, the Ki values suggest a potential for clinically significant inhibition of CES1 by THC and CBD. CBN, however, is expected to have a limited impact on CES1. Carefully designed clinical studies are warranted to establish the clinical significance of these in vitro findings.

Journal ArticleDOI
TL;DR: Semiphysiologic modeling of CP metabolism using scaled metabolic parameters resulted in simulated data that closely matched published pharmacokinetic profiles, determined by noncompartmental analysis, and highlights differential CP metabolism delineated by species.
Abstract: Cyclophosphamide (CP), a prodrug that is enzymatically converted to the cytotoxic 4-hydroxycyclophosphamide (4OHCP) by hepatic enzymes, is commonly used in both human and veterinary medicine to treat cancers and modulate the immune system. We investigated the metabolism of CP in humans, dogs, cats, and mice using liver microsomes; apparent KM, Vmax, and intrinsic clearance (Vmax/KM) parameters were estimated. The interspecies and intraspecies variations in kinetics were vast. Dog microsomes were, on average, 55-fold more efficient than human microsomes, 2.8-fold more efficient than cat microsomes, and 1.2-fold more efficient than mouse microsomes at catalyzing CP bioactivation. These differences translated to cell-based systems. Breast cancer cells exposed to 4OHCP via CP bioactivation by microsomes resulted in a stratification of cytotoxicity that was dependent on the species of microsomes measured by IC50: dog (31.65 μM), mouse (44.95 μM), cat (272.6 μM), and human (1857 μM). The contributions of cytochrome P450s, specifically, CYP2B, CYP2C, and CYP3A, to CP bioactivation were examined: CYP3A inhibition resulted in no change in 4OHCP formation; CYP2B inhibition slightly reduced 4OHCP in humans, cats, and mice; and CYP2C inhibition drastically reduced 4OHCP formation in each species. Semiphysiologic modeling of CP metabolism using scaled metabolic parameters resulted in simulated data that closely matched published pharmacokinetic profiles, determined by noncompartmental analysis. The results highlight differential CP metabolism delineated by species and demonstrate the importance of metabolism on CP clearance.

Journal ArticleDOI
TL;DR: Using model compounds and anticancer drugs, it is demonstrated how mouse lines can be applied to predict drug-drug interactions in patients and their potential application in the more informed design of clinical trials and the personalized treatment of cancer is discussed.
Abstract: Species differences in drug metabolism and disposition can confound the extrapolation of in vivo PK data to man and also profoundly compromise drug efficacy studies owing to differences in pharmacokinetics, in metabolites produced (which are often pharmacologically active), and in differential activation of the transcription factors constitutive androstane receptor (CAR) and pregnane X receptor (PXR), which regulate the expression of such enzymes as P450s and drug transporters. These differences have gained additional importance as a consequence of the use of genetically modified mouse models for drug-efficacy testing and also patient-derived xenografts to predict individual patient responses to anticancer drugs. A number of humanized mouse models for cytochrome P450s, CAR, and PXR have been reported. However, the utility of these models has been compromised by the redundancy in P450 reactions across gene families, whereby the remaining murine P450s can metabolize the compounds being tested. To remove this confounding factor and create a mouse model that more closely reflects human pathways of drug disposition, we substituted 33 murine P450s from the major gene families involved in drug disposition, together with Car and Pxr, for human CAR, PXR, CYP1A1, CYP1A2, CYP2C9, CYP2D6, CYP3A4, and CYP3A7. We also created a mouse line in which 34 P450s were deleted from the mouse genome. Using model compounds and anticancer drugs, we demonstrated how these mouse lines can be applied to predict drug-drug interactions in patients and discuss here their potential application in the more informed design of clinical trials and the personalized treatment of cancer.

Journal ArticleDOI
TL;DR: It is hoped this paper will stimulate greater understanding of the path from circulation to cell interior, and thereby avoid or minimize the need to provide the experimentally very determining, and sometimes still questionable, answer to this problem.
Abstract: The distribution of a drug within the body should be considered as involving movement of unbound drug between the various aqueous spaces of the body. At true steady state, even for a compound of restricted lipoidal permeability, unbound concentrations in all aqueous compartments (blood, extracellular, and intracellular) are considered identical, unless a compartment has a clearance/transport process. In contrast, total drug concentrations may differ greatly, reflecting binding or partitioning into constituents of each compartment. For most highly lipid permeable drugs, this uniform unbound concentration is expected to apply. However, many compounds have restricted lipoidal permeability and are subjected to transport/clearance processes causing a gradient between intracellular and extracellular unbound concentrations even at steady state. Additional concerns arise where the drug target resides in a site of limited vascularity. Many misleading assumptions about drug concentrations and access to drug targets are based on total drug. Correction, if made, is usually by measuring tissue binding, but this is limited by the lack of homogenicity of the organ or compartment. Rather than looking for technology to measure the unbound concentration it may be better to focus on designing high lipoidal permeable molecules with a high chance of achieving a uniform unbound drug concentration. It is hoped this paper will stimulate greater understanding of the path from circulation to cell interior, and thereby in part avoid or minimize the need to provide the experimentally very determining, and sometimes still questionable, answer to this problem.

Journal ArticleDOI
TL;DR: An overview on biotransformation processes, proteases involved, strategic considerations, regulatory guidelines, literature examples for in vitro and in vivo biotansformation, and technical approaches to study protein biotranformation is provided.
Abstract: For therapeutic proteins, the currently established standard development path generally does not foresee biotransformation studies by default because it is well known that the clearance of therapeutic proteins proceeds via degradation to small peptides and individual amino acids. In contrast to small molecules, there is no general need to identify enzymes involved in biotransformation because this information is not relevant for drug–drug interaction assessment and for understanding the clearance of a therapeutic protein. Nevertheless, there are good reasons to embark on biotransformation studies, especially for complex therapeutic proteins. Typical triggers are unexpected rapid clearance, species differences in clearance not following the typical allometric relationship, a mismatch in the pharmacokinetics/pharmacodynamics (PK/PD) relationship, and the need to understand observed differences between the results of multiple bioanalytical methods (e.g., total vs. target-binding competent antibody concentrations). Early on during compound optimization, knowledge on protein biotransformation may help to design more stable drug candidates with favorable in vivo PK properties. Understanding the biotransformation of a therapeutic protein may also support designing and understanding the bioanalytical assay and ultimately the PK/PD assessment. Especially in cases where biotransformation products are pharmacologically active, quantification and assessment of their contribution to the overall pharmacological effect can be important for establishing a PK/PD relationship and extrapolation to humans. With the increasing number of complex therapeutic protein formats, the need for understanding the biotransformation of therapeutic proteins becomes more urgent. This article provides an overview on biotransformation processes, proteases involved, strategic considerations, regulatory guidelines, literature examples for in vitro and in vivo biotransformation, and technical approaches to study protein biotransformation. SIGNIFICANCE STATEMENT Understanding the biotransformation of complex therapeutic proteins can be crucial for establishing a pharmacokinetic/pharmacodynamic relationship. This article will highlight scientific, strategic, regulatory, and technological features of protein biotransformation.

Journal ArticleDOI
TL;DR: An enzyme kinetic-based model is developed to enable more accurate prediction of the fate of new chemicals in humans and which can be validated in vivo using mice humanized for cytochrome P450–mediated metabolism.
Abstract: Cytochrome P450s CYP1A1 and CYP1A2 can metabolize a broad range of foreign compounds and drugs. However, these enzymes have significantly overlapping substrate specificities. To establish their relative contribution to drug metabolism in vivo, we used a combination of mice humanized for CYP1A1 and CYP1A2 together with mice nulled at the Cyp1a1 and Cyp1a2 gene loci. CYP1A2 was constitutively expressed in the liver, and both proteins were highly inducible by 2,3,7,8-tetrachlorodibenzodioxin (TCDD) in a number of tissues, including the liver, lung, kidney, and small intestine. Using the differential inhibition of the human enzymes by quinidine, we developed a method to distinguish the relative contribution of CYP1A1 or CYP1A2 in the metabolism of drugs and foreign compounds. Both enzymes made a significant contribution to the hepatic metabolism of the probe compounds 7-methoxy and 7-ehthoxyresorufin in microsomal fractions from animals treated with TCDD. This enzyme kinetic approach allows modeling of the CYP1A1, CYP1A2, and non-CYP1A contribution to the metabolism of any substrate at any substrate, inhibitor, or enzyme concentration and, as a consequence, can be integrated into a physiologically based pharmacokinetics model. The validity of the model can then be tested in humanized mice in vivo. SIGNIFICANCE STATEMENT: Human CYP1A1 and CYP1A2 are important in defining the efficacy and toxicity/carcinogenicity of drugs and foreign compounds. In light of differences in substrate specificity and sensitivity to inhibitors, it is of central importance to understand their relative role in foreign compound metabolism. To address this issue, we have generated mice humanized or nulled at the Cyp1a gene locus and, through the use of these mouse lines and selective inhibitors, developed an enzyme kinetic-based model to enable more accurate prediction of the fate of new chemicals in humans and which can be validated in vivo using mice humanized for cytochrome P450-mediated metabolism.

Journal ArticleDOI
Xinwen Wang1, Bing He1, Jian Shi1, Qian Li1, Hao Jie Zhu1 
TL;DR: A label-free global absolute quantitative proteomics method was applied to the analysis of HLS9 and the corresponding HLM and revealed significant differences in protein concentrations of drug-metabolizing enzymes and transporters between human liver microsomes and S9 fractions.
Abstract: Human liver microsomes (HLM) and human liver S9 fractions (HLS9) are commonly used to study drug metabolism in vitro. However, a quantitative comparison of HLM and HLS9 proteomes is lacking, resulting in the arbitrary selection of one hepatic preparation over another and in difficulties with data interpretation. In this study, we applied a label-free global absolute quantitative proteomics method to the analysis of HLS9 and the corresponding HLM prepared from 102 individual human livers. A total of 3137 proteins were absolutely quantified, and 3087 of those were determined in both HLM and HLS9. Protein concentrations were highly correlated between the two hepatic preparations (R = 0.87, P < 0.0001). We reported the concentrations of 98 drug-metabolizing enzymes (DMEs) and 51 transporters, and demonstrated significant differences between their abundances in HLM and HLS9. We also revealed the protein-protein correlations among these DMEs and transporters and the sex effect on the HLM and HLS9 proteomes. Additionally, HLM and HLS9 displayed distinct expression patterns for protein markers of cytosol and various cellular organelles. Moreover, we evaluated the interindividual variability of three housekeeping proteins, and identified five proteins with low variation across individuals that have the potential to serve as new internal controls for western blot experiments. In summary, these results will lead to better understanding of data obtained from HLM and HLS9 and assist in in vitro-in vivo extrapolations. Knowing the differences between HLM and HLS9 also allows us to make better-informed decisions when choosing between these two hepatic preparations for in vitro drug metabolism studies. SIGNIFICANCE STATEMENT: This investigation revealed significant differences in protein concentrations of drug-metabolizing enzymes and transporters between human liver microsomes and S9 fractions. We also determined the protein-protein correlations among the drug-metabolizing enzymes and transporters and the sex effect on the proteomes of these two hepatic preparations. The results will help interpret data obtained from these two preparations and allow us to make more informed decisions when choosing between human liver microsomes and S9 fractions for in vitro drug metabolism studies.

Journal ArticleDOI
TL;DR: The molecular mechanism by which the rhythmic Fmo5 expression was generated was uncovered and implications for understanding clock-controlled drug metabolism and for facilitating the practice of chronotherapeutics are revealed.
Abstract: Flavin-containing monooxygenase 5 (FMO5) is a phase I enzyme that plays an important role in xenobiotic metabolism. Here, we aimed to characterize diurnal rhythms of Fmo5 expression and activity in mouse liver, and to investigate the potential roles of circadian clock genes (Bmal1, Rev-erbα and E4bp4) in generation of diurnal rhythms. Fmo5 mRNA and protein showed robust diurnal rhythms with peak values at ZT10/14 and trough values at ZT2/22 in mouse liver. Consistently, a diurnal rhythm was observed for in vitro microsomal metabolism of pentoxifylline (PTX), a specific substrate of Fmo5. Pharmacokinetic study revealed a more extensive metabolism of PTX at dosing time of ZT14 than at ZT2 consistent with the diurnal pattern of Fmo5 protein. Fmo5 expression was down-regulated and its rhythm was blunted in Bmal1-/- and Rev-erbα-/- mice. Positive regulation of Fmo5 by Bmal1 and Rev-erbα was confirmed in primary mouse hepatocytes and/or Hepa1-6 cells. Furthermore, Fmo5 expression was up-regulated and its rhythm was attenuated in E4bp4-/- mice. Negative regulation of Fmo5 by E4bp4 was validated using primary mouse hepatocytes. Combined luciferase reporter and chromatin immunoprecipitation assays demonstrated that Bmal1 (a known Rev-erbα activator) activated Fmo5 transcription via direct binding to an E-box (−1822/−1816 bp) in the promoter, whereas E4bp4 (a known Rev-erbα target gene) inhibited Fmo5 transcription by binding to two D-boxes (-1726/-1718 and -804/-796 bp). In conclusion, circadian clock genes control diurnal expression of Fmo5 through transcriptional actions on E-box and D-box cis-elements. SIGNIFICANCE STATEMENT Flavin-containing monooxygenase 5 (FMO5) is a phase I enzyme that plays an important role in xenobiotic metabolism. In this study, we reported diurnal expression and activity of Fmo5 in mouse liver. Moreover, we uncovered the molecular mechanism by which the rhythmic Fmo5 expression was generated. To be specific, Fmo5 promoter presents E-box and D-box binding elements for transcriptional actions from circadian clock proteins such as Bmal1, E4bp4 and Dbp. In addition to direct trans-activation, the E-box binding protein Bmal1 indirectly regulates the transcription of Fmo5 through Dbp and Rev-erbα/E4bp4 axis. Our study has significant implications for understanding of clock-controlled drug metabolism and for facilitating the practice of chronotherapeutics.