scispace - formally typeset
Search or ask a question

Showing papers in "Endocrinology in 1992"


Journal ArticleDOI
TL;DR: New insulin-secreting cell lines established from cells isolated from an x-ray-induced rat transplantable insulinoma indicate that INS-1 cells have remained stable and retain a high degree of differentiation which should make them a suitable model for studying various aspects of beta-cell function.
Abstract: New insulin-secreting cell lines (INS-1 and INS-2) were established from cells isolated from an x-ray-induced rat transplantable insulinoma. The continuous growth of these cells was found to be dependent on the reducing agent 2-mercaptoethanol. Removal of this thiol compound caused a 15-fold drop in total cellular glutathione levels. These cells proliferated slowly (population doubling time about 100 h) and, in general, showed morphological characteristics typical of native beta-cells. Most cells stained positive for insulin and did not react with antibodies against the other islet hormones. The content of immunoreactive insulin was about 8 micrograms/10(6) cells, corresponding to 20% of the native beta-cell content. These cells synthesized both proinsulin I and II and displayed conversion rates of the two precursor hormones similar to those observed in rat islets. However, glucose failed to stimulate the rate of proinsulin biosynthesis. In static incubations, glucose stimulated insulin secretion from floating cell clusters or from attached cells. Under perifusion conditions, 10 mM but not 1 mM glucose enhanced secretion 2.2-fold. In the presence of forskolin and 3-isobutyl-1-methylxanthine, increase of glucose concentration from 2.8-20 mM caused a 4-fold enhancement of the rate of secretion. Glucose also depolarized INS-1 cells and raised the concentration of cytosolic Ca2+. This suggests that glucose is still capable of eliciting part of the ionic events at the plasma membrane, which leads to insulin secretion. The structural and functional characteristics of INS-1 cells remained unchanged over a period of 2 yr (about 80 passages). Although INS-2 cells have not been fully characterized, their insulin content was similar to that of INS-1 cells and they also remain partially sensitive to glucose as a secretagogue. INS-1 cells retain beta-cell surface antigens, as revealed by reactivity with the antigangloside monoclonal antibodies R2D6 and A2B5. These findings indicate that INS-1 cells have remained stable and retain a high degree of differentiation which should make them a suitable model for studying various aspects of beta-cell function.

1,169 citations


Journal ArticleDOI
TL;DR: The receptor selectivity of the natriuretic peptide family was investigated using the homologous assay system with endogenous ligands and receptors of the same species and the rank order of binding affinity for the C-receptor was ANP greater than CNP greater than BNP in both humans and rats.
Abstract: To elucidate the ligand-receptor relationship of the natriuretic peptide system, which comprises at least three endogenous ligands, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), and three receptors, the ANP-A receptor or guanylate cyclase-A (GC-A), the ANP-B receptor or guanylate cyclase-B (GC-B), and the clearance receptor (C-receptor), we characterized the receptor preparations from human, bovine, and rat tissues and cultured cells with the aid of the binding assay, Northern blot technique, and the cGMP production method. Using these receptor preparations, we examined the binding affinities of ANP, BNP, and CNP for the C-receptor and their potencies for cGMP production via the ANP-A receptor (GC-A) and the ANP-B receptor (GC-B). These analyses revealed the presence of a marked species difference in the receptor selectivity of the natriuretic peptide family, especially among BNPs. Therefore, we investigated the receptor selectivity of the natriuretic peptide family using the homologous assay system with endogenous ligands and receptors of the same species. The rank order of binding affinity for the C-receptor was ANP greater than CNP greater than BNP in both humans and rats. The rank order of potency for cGMP production via the ANP-A receptor (GC-A) was ANP greater than or equal to BNP much greater than CNP, but that via the ANP-B receptor (GC-B) was CNP greater than ANP greater than or equal to BNP. These findings on the receptor selectivity of the natriuretic peptide family provide a new insight into the understanding of the physiological and clinical implications of the natriuretic peptide system.

741 citations


Journal ArticleDOI
TL;DR: Fasting increases NPY biosynthesis along an arcuate nucleus-PVN pathway in the hypothalamus via a mechanism dependent on low insulin levels and suggests that insulin acts locally to inhibit hypothalamic NPY mRNA expression.
Abstract: Insulin acts in the brain to suppress feeding, whereas neuropeptide Y (NPY) has the opposite effect. Since fasting lowers plasma insulin levels and increases hypothalamic synthesis of NPY, we proposed that insulin may inhibit hypothalamic NPY gene expression. To test this hypothesis, we used RIA and in situ hybridization histochemistry to determine if centrally administered insulin could reduce levels of both NPY and its messenger RNA (mRNA) in discreet hypothalamic regions during fasting. Three groups of Long-Evans rats were entered into a 72-h study protocol. One group was fed ad libitum during this period, while the others were fasted. Fed rats received intracerebroventricular (icv) injections of saline vehicle at 12-h intervals, whereas fasted groups received icv vehicle alone or with insulin (4 mU/12 h). In vehicle-only treated rats, fasting significantly increased expression of preproNPY mRNA in the arcuate nucleus to 179 +/- 20% of fed controls. Administration of icv insulin during fasting abolishe...

569 citations


Journal ArticleDOI
TL;DR: It is suggested that sustained elevations of TNF during chronic therapy and prolonged production of T NF by patients and experimental animals with malignancies or infectious diseases may be an important mechanism for the enhanced glucose flux as well as the insulin resistance seen in these conditions.
Abstract: The present study examined whether a prolonged infusion of tumor necrosis factor (TNF) into rats could sustain the increased rate of whole body glucose metabolism observed with short term exposure, and whether TNF produced hepatic or peripheral insulin resistance. Basal glucose metabolism was determined with the use of [3-3H]glucose 18 h after initiating a constant infusion of recombinant human TNF (1 microgram/kg.h). Thereafter, a two-step euglycemic hyperinsulinemic clamp was performed to determine whether TNF impaired insulin action. The overnight infusion of TNF minimally elevated plasma glucose concentrations (17%), but produced large increases in the whole body rate of glucose production and utilization (133%). Under hyperinsulinemic conditions, the glucose infusion rate necessary to maintain euglycemia was 30% lower in TNF-treated rats, indicating an insulin-resistant condition. This resulted from an impaired ability of insulin to both suppress hepatic glucose production and stimulate peripheral gl...

521 citations


Journal ArticleDOI
TL;DR: The findings suggest that hyperactivation of the hypothalamic-pituitary-adrenal axis after stress in E-treated rats is due in part to impaired glucocorticoid receptor-mediated slow negative feedback.
Abstract: The effect of estrogen (E) on the hypothalamic-pituitary-adrenal axis was investigated in female Sprague-Dawley rats. Animals were bilaterally ovariectomized (OVX), and a Silastic capsule (0.5 cm) containing 17 beta-estradiol was sc implanted. Control animals received a blank capsule. Animals were killed 21 days later. In E-treated rats, we found significantly higher corticosterone (CORT) peak levels 20 min after a 5-sec footshock (1.0 mamp) or exposure to ether vapors (P less than 0.05) compared to those in OVX controls. In addition, the recovery of the ACTH and CORT responses to footshock stress was significantly prolonged (P less than 0.05) in the presence of E. Furthermore, the ACTH and CORT secretory responses to ether stress could be suppressed by exogenous RU 28362 (a specific glucocorticoid receptor agonist; 40 micrograms/100 g BW for 4 days) in OVX controls (P less than 0.05), but not in E-treated animals. These data suggest that E can impair glucocorticoid receptor-mediated delayed or slow negative feedback. Consequently, we examined the influence of E on mineralocorticoid and glucocorticoid receptor concentrations using in vitro binding assays. E did not alter mineralocorticoid or glucocorticoid receptor concentrations in any of the brain regions examined. The administration of RU 28362 (40 micrograms/100 g BW for 4 days) to OVX control or E-treated rats significantly down-regulated hippocampal glucocorticoid receptor (P less than 0.02) in control rats only. In contrast, aldosterone administration (40 micrograms/100 g BW for 4 days) significantly down-regulated hippocampal glucocorticoid receptor (P less than 0.0008) in both control and E-treated animals. Thus, E treatment results in a loss of the glucocorticoid receptor's ability to autoregulate; this suggests that E may cause a functional impairment of the glucocorticoid receptor even though receptor binding appears normal. These findings suggest that hyperactivation of the hypothalamic-pituitary-adrenal axis after stress in E-treated rats is due in part to impaired glucocorticoid receptor-mediated slow negative feedback.

456 citations


Journal ArticleDOI
TL;DR: Results indicate that rhBMP-2 induces the expression of several markers associated with the osteoblast phenotype in W-20-17 cells and raises the possibility that B MP-2 may be involved in the differentiation of osteoblasts from progenitor cells resident in bone marrow.
Abstract: To better understand the in vivo bone-inductive properties of recombinant human (rh) BMP-2, we examined the ability of the protein to alter the phenotype of a bone marrow stromal cell line. W-20-17. rhBMP-2 increased alkaline phosphatase activity in W-20-17 cells in a dose-responsive manner in the absence of an effect on proliferation. The induction of alkaline phosphatase activity was not apparent until 12 h after rhBMP-2 treatment had begun and was effectively eliminated by cotreatment with cycloheximide, suggesting a requirement for protein synthesis. Continued treatment of W-20-17 cells with rhBMP-2 for 8 days resulted in a significant increase, compared to control cultures, in the production of cellular cAMP in response to a PTH challenge. In addition, 4-day treatment with rhBMP-2 induced osteocalcin levels in W-20-17 cells. These results indicate that rhBMP-2 induces the expression of several markers associated with the osteoblast phenotype in W-20-17 cells and raises the possibility that BMP-2 may ...

433 citations


Journal ArticleDOI
TL;DR: Insulin secretory data demonstrates that the increased sensitivity of B cells to glucose is an important component of the adaptation of islets during pregnancy to the increased demand for insulin at physiological concentrations of plasma glucose, and provides evidence that rPL-I may be the critical hormonal signal which triggers the primary adaptive changes in islet function characteristic of pregnancy.
Abstract: To elucidate the temporal profile of adaptive changes of the islets of Langerhans to the increased insulin demands of pregnancy, we have studied islet cell proliferation and insulin secretion during gestation in the rat. 5-Bromo-2'-deoxyuridine incorporation into dividing islet cells was significantly (P less than 0.05) increased over age-matched controls by day 10, rose continuously to a peak at day 14, and then returned to control levels by day 18. By day 20, cell division was significantly inhibited (P less than 0.05). The pattern of changes in insulin secretory profiles observed with perfused pancreata of pregnant animals was similar to that obtained for islet cell proliferation. Both the threshold of glucose-stimulated insulin secretion and the amount of above threshold insulin secretion began to diverge from controls by day 10. By day 12, the glucose-stimulation threshold was significantly decreased from 5.7 mM glucose to 3.3 mM (P less than 0.05), remained at this low level through day 15, and returned toward normal by day 20. Concomitant with the increased sensitivity of B cells to glucose, the above threshold insulin secretion was significantly increased by day 12 (P less than 0.05), peaked at day 15, and returned to control levels by day 20. This insulin secretory data demonstrates that the increased sensitivity of B cells to glucose is an important component of the adaptation of islets during pregnancy to the increased demand for insulin at physiological concentrations of plasma glucose. To correlate the above changes in islet cell proliferation and insulin secretion with levels of placental lactogen (PL), serum lactogenic hormone activity was measured by Nb2 lymphoma cell replication assays. This analysis revealed the expected biphasic pattern: a midpregnancy peak at day 12, followed by a nadir at day 14, and then continuously elevated levels until term. The bioassay data agreed with the known secretory profiles of rat (r) PL-I (midpregnancy) and rPL-II (late pregnancy). Our results provide the first systematic evaluation of changes in islet function during pregnancy in the rat. In addition, they provide evidence that rPL-I may be the critical hormonal signal which triggers the primary adaptive changes in islet function characteristic of pregnancy. The return to normal values of insulin secretion and inhibition of cell division observed at day 20 in the presence of high concentrations of rPL-II suggests that other inhibitory influences become dominant in the later stages of rat pregnancy.(ABSTRACT TRUNCATED AT 400 WORDS)

430 citations


Journal ArticleDOI
TL;DR: The results suggest that estrogens almost instantaneously trigger the release of Ca2+ from intracellular stores which may be mediated through phosphoinositide breakdown.
Abstract: We have investigated the effects of steroids on the intracellular calcium ion concentration [Ca2+]i in chicken granulosa cells obtained from the two largest preovulatory follicles of laying hens. [Ca2+]i was measured in cells loaded with the Ca(2+)-responsive fluorescent dye fura-2. The resting [Ca2+]i in these cells was 100 +/- 5 nM. There was an immediate (i.e. less than 5 sec) 4- to 8-fold increase in [Ca2+]i in all of the 76 cells examined after the addition of 10(-7) M estradiol-17 bdta. Estradiol-17 beta was effective between 10(-10)-10(-6) M. Estradiol-17 alpha, estrone, and estriol (10(-8)-10(-6) M) were as effective as estradiol-17 beta, but the progestins, pregnenolone, and progesterone, and the androgens, testosterone, androstenedione, or 5 alpha-dihydrotestosterone were ineffective at concentrations up to 10(-5) M. The prompt estradiol-17 beta-induced [Ca2+]i spike was not affected by incubating the cells in Ca(2+)-free medium containing 2 mM EGTA or by pretreating them with the Ca2+ channel blockers lanthanum (1 mM), cobalt (5 mM), methoxyverapamil (D600; 50 microM), or nifedipine (20 microM). The estrogen-triggered [Ca2+]i surge was also not affected by pretreating the cells with the conventional estrogen receptor antagonist tamoxifen (10(-5) M), or the RNA and protein synthesis inhibitors actinomycin D (1 microgram/ml) and cycloheximide (1 microgram/ml), but was abolished by pretreating the cells with inhibitors of inositol phospholipid hydrolysis, neomycin (1.5 mM) and U-73,122 (2.5 microM). The closely related, but inactive, compound U-73,343 (1 microM) did not affect the estrogen-triggered [Ca2+]i surge. Estradiol-17 beta (10(-7) M), but not progesterone (10(-5) M), also triggered a large [Ca2+]i surge in pig granulosa cells, which, like the [Ca2+]i surge in chicken granulosa cells, was almost immediate, transient, and unaffected by incubation in Ca(2+)-free medium or pretreatment with methoxyverapamil (D600; 50 microM), lanthanum (1 mM), or tamoxifen (10(-5)M). However, granulosa cells from immature rats primed with diethylstilbestrol or PMSG did not respond to estradiol-17 beta, even at concentrations as high as 10(-5) M, although they promptly generated a [Ca2+]i transient upon exposure to LHRH (10(-5) M). These results suggest that estrogens almost instantaneously trigger the release of Ca2+ from intracellular stores which may be mediated through phosphoinositide breakdown. The striking rapidity of this estrogen-induced internal Ca2+ mobilization is consistent with the activation of a cell surface receptor which is different from the conventional slowly acting, gene-stimulating nuclear estrogen receptor.

388 citations


Journal ArticleDOI
TL;DR: It is suggested that IL-6 can induce an increase in endothelial permeability in vitro by rearranging actin filaments and by changing the shape of endothelial cells.
Abstract: The effect of interleukin 6 (IL-6) on endothelial permeability was examined by measuring fluorescein isothiocyanate-labeled albumin flux across an endothelial cell monolayer. Bovine vascular endothelial cells (BVEC) were cultured up to confluency on collagen-coated polycarbonate micropore filters and then the filters were mounted on modified Boyden chambers. Treatment of the BVEC with IL-6 at 100 ng/ml for 21 h caused a remarkable increase in the permeability of fluorescein isothiocyanate-labeled albumin across the endothelial monolayer. This effect of IL-6 was concentration dependent, in the range from 10-200 ng/ml of IL-6. The effect of IL-6 was also time dependent, the maximal level being reached at 21 h from the beginning of the treatment. This stimulatory effect of IL-6 on albumin clearance was completely abolished by the addition of anti-IL-6 antibody. Light microscopic observation of a cross-section of a monolayer showed that the IL-6-induced increase in the permeability was correlated with changes in cell shape and rearrangement of intracellular actin fibers. IL-6 did not show any cytotoxicity toward or growth inhibition of endothelial cells, even at more than 200 ng/ml. The enhancing effect of IL-6 on the increase in the permeability was reversible; when IL-6 was removed by a medium change and the cells were incubated for a further 24 h without IL-6, the permeability was restored to the control level. These results suggest that IL-6 can induce an increase in endothelial permeability in vitro by rearranging actin filaments and by changing the shape of endothelial cells.

381 citations


Journal ArticleDOI
TL;DR: The notion that GLP-I(7-37) may be of therapeutic use in stimulating the production of insulin in patients with noninsulin-dependent diabetes mellitus is supported and overproduction of insulin with subsequent hypoglycemia will not occur in response to the administration of the drug.
Abstract: Glucagon-like peptide-I(7-37) [GLP-I(7-37)] is an intestinal peptide hormone that is released in response to oral nutrients and that potently augments glucose-mediated insulin secretion. GLP-I(7-37) has potent insulin-releasing activities in vivo in response to oral nutrients, in situ in the isolated perfused pancreas, and in vitro in cultured pancreatic B-cells. As such GLP-I(7-37) is a potent hormonal mediator in the enteroinsular axis involved in the regulation of glucose homeostasis. We now show that in addition to stimulating the release of insulin, GLP-I(7-37) stimulates proinsulin gene expression at the levels of gene transcription and cellular levels of proinsulin messenger RNA as well as the translational biosynthesis of proinsulin. These findings of the positive anabolic actions of GLP-I(7-37) on the synthesis of insulin in B-cells support the notion that GLP-I(7-37) may be of therapeutic use in stimulating the production of insulin in patients with noninsulin-dependent diabetes mellitus and that overproduction of insulin with subsequent hypoglycemia will not occur in response to the administration of GLP-I(7-37). Furthermore, these positive actions of GLP-I(7-37) on insulin production obviate the possibility of B-cell exhaustion in response to such a potent secretagogue.

352 citations


Journal ArticleDOI
TL;DR: Data indicate that the agonist and antagonist binding sites on the NMDA receptor/ion channel complex are regulated independently by an as yet unidentified mechanism, and that this regulation exhibits regional specificity in the hippocampus.
Abstract: Estradiol alters cognitive function and lowers the threshold for seizures in women and laboratory animals. Both of these activities are modulated by the excitatory neurotransmitter glutamate in the hippocampus. To assess the hypothesis that estradiol increases the sensitivity of the hippocampus to glutamate activation by increasing glutamate binding sites, the densities of N-methyl-D-aspartate (NMDA) agonist sites (determined by NMDA displaced glutamate), competitive antagonist sites (CGP 39653), noncompetitive antagonist sites (MK801) as well as the non-NMDA glutamate receptors for kainate and AMPA (using kainate and CNQX, respectively) were measured using autoradiographic procedures. Two days of estradiol treatment increased the density of NMDA agonist, but not of competitive nor noncompetitive NMDA antagonist binding sites exclusively in the CA1 region of the hippocampus. The density of noncompetitive NMDA antagonist sites, however, was decreased in the dentate gyrus by estradiol treatment. Ovarian ste...

Journal ArticleDOI
TL;DR: It is demonstrated that the mRNAs for the two subtypes of rat ET receptors show specialized expression patterns of cell types in both brain and peripheral tissues.
Abstract: Endothelins (ETs) are very potent vasoconstrictive peptides and have diverse functions in both vascular and nonvascular tissues. This investigation concerns the tissue distribution and cellular localization of rat mRNAs encoding two different subtypes of ET receptors (ETA and ETB). We isolated 46 cDNA clones from a rat lung cDNA library by hybridization with the bovine ETA cDNA. The characterization of these cDNA clones indicated that they represent either the ETA or ETB cDNA. In situ and blot hybridization analyses revealed that the rat ETA mRNA is predominantly expressed in vascular smooth muscle cells of a variety of tissues, bronchial smooth muscle cells, myocardium, and the pituitary gland. There is no significant expression of ETB mRNA in vascular smooth muscle cells, and ETA, thus, plays a primary role in ET-induced vascular contraction. ETB mRNA is more widely distributed in various cell types of many tissues. Its prominent expression is seen in glial cells throughout the brain regions, epithelial...

Journal ArticleDOI
TL;DR: A development-related expression of mRNA for V EGF in the ovary during the menstrual cycle is demonstrated and is consistent with the hypothesis that VEGF may play important roles in follicle selection and corpus luteum function in primates.
Abstract: We studied the distribution of messenger RNA (mRNA) that encodes for vascular endothelial growth factor (VEGF) within the primate ovary by in situ hybridization and Northern analysis to determine if the presence of mRNA for this angiogenic factor is associated with structures within the ovary in which angiogenesis is thought to play a role in development and/or function. In situ hybridization to sections of cynomolgus ovaries with a 35S-labeled antisense RNA probe revealed specific tissue localization within the follicle as well as the corpus luteum, but not stromal tissue. Intense expression of mRNA for VEGF during the late follicular phase was confined to the maturing follicle which, we presume, was destined for ovulation. Hybridization within the corpus luteum exhibited a punctate pattern suggesting that there may be specific cells within the corpus luteum that express mRNA for VEGF. The expression of mRNA for VEGF during the early and late luteal phase of the menstrual cycle was studied by Northern an...

Journal ArticleDOI
TL;DR: Results indicated that LTF protein is a useful marker for tracking PMN, and suggested that nonproliferating epithelial cells in the vagina and endometrium may synthesize chemotactic and/or adhesion molecules for PMN.
Abstract: Lactoferrin (LTF), an iron-binding glycoprotein present in most exocrine secretions and in the secondary granules of polymorphonuclear leucocytes (PMN), is regulated by estrogen in the mouse reproductive tract. We investigated the expression of LTF mRNA and protein during the natural estrous cycle to increase our understanding of how this uterine secretory protein is regulated under physiological conditions. There was a positive correlation between LTF mRNA expression in the genital tract and serum estradiol (E2) concentrations. When E2 peaked in proestrus, LTF mRNA and protein were expressed in the uterus; however, during metestrus, when both E2 and progesterone levels were high, LTF mRNA was expressed, while LTF protein was decreasing. LTF protein expression may be hindered by progesterone or some other local factor in the endometrial epithelium after ovulation. Immunohistochemistry demonstrated two distinct staining patterns for LTF in the vaginal and endometrial epithelium. In one staining pattern, the colorimetric reaction was noted over the cytoplasm, and in the other, the nuclear region stained more intensely. This suggests the possibility that in addition to its known role as a secretory protein, LTF may be transported to the nucleus, serving an autocrine role. Our results also indicated that LTF protein is a useful marker for tracking PMN. Nonproliferating epithelial cells in the vagina and endometrium may synthesize chemotactic and/or adhesion molecules for PMN.

Journal ArticleDOI
TL;DR: Findings indicate that chronic production of excess CRF results in sustained stimulation of pituitary corticotrope cells, resulting in elevated ACTH and consequent glucocorticoid overproduction, a condition that leads to the development of Cushing's syndrome.
Abstract: CRF is released in response to various stressors and regulates ACTH secretion and glucocorticoid production. CRF overproduction has been implicated in affective disorders, such as depression and anorexia nervosa, and may lead to Cushing's syndrome. To test whether CRF overproduction leads to Cushing's syndrome and to develop an animal model of chronic pituitary-adrenal activation, the CRF gene was expressed under control of the metallothionein promoter in transgenic mice. CRF transgenic animals exhibit endocrine abnormalities involving the hypothalamic-pituitary-adrenal axis, such as elevated plasma levels of ACTH and glucocorticoids. These animals display physical changes similar to those of patients with Cushing's syndrome, such as excess fat accumulation, muscle atrophy, thin skin, and alopecia. These findings indicate that chronic production of excess CRF results in sustained stimulation of pituitary corticotrope cells, resulting in elevated ACTH and consequent glucocorticoid overproduction, a condition that leads to the development of Cushing's syndrome. Analysis of CRF mRNA distribution revealed that transgene expression is primarily restricted to cells that express the endogenous CRF gene and does not follow the pattern predicted of a metallothionein-regulated gene. These results suggest that DNA elements located outside of the CRF promoter but present within the CRF intron, coding, or 3'-flanking regions may contribute to the cell type specificity of CRF gene expression.

Journal ArticleDOI
TL;DR: The results suggest that IGF-I directly or indirectly stimulates osteoclast recruitment and activation through its direct or indirect action of supporting the generation and activation of osteoclasts.
Abstract: Although the action of insulin-like growth factor-I (IGF-I) on bone formation has been extensively investigated, the effect of the factor on bone resorption is little known. We first examined the effect of IGF-I on bone resorption by preexistent osteoclasts by using unfractionated bone cells cultured on dentin slices. IGF-I had a dose-related effect of stimulating bone resorption by preexistent osteoclasts, whereas IGF-II did not. When IGF-I was added to cultures of bone cells after preexistent osteoclasts had degenerated on the dentin slices, IGF-I increased the number of osteoclastic multinucleate cells (MNCs) with tartrate-resistant acid phosphatase activity. Moreover, IGF-I augmented the area of pits produced by newly formed osteoclasts. These results suggest that IGF-I directly or indirectly stimulates osteoclast recruitment and activation. Therefore, we next examined the direct effect of IGF-I on osteoclastic MNC formation by using hemopoietic blast cells. In the presence of 1,25-dihydroxyvitamin D3, IGF-I, like granulocyte-macrophage colony-stimulating factor (GM-CSF), dose-dependently increased the number of TRAP-positive MNCs. This stimulatory effect of IGF-I was additive with that of GM-CSF. Both IGF-I and GM-CSF supported the survival of the blast cells, indicating that IGF-I as well as GM-CSF are supporting factors for osteoclast differentiation. In addition, the blast cells possessed high affinity binding sites for IGF-I, with a Kd of 0.8 nM. These data, thus, indicate that IGF-I stimulates osteoclastic bone resorption through its direct or indirect action of supporting the generation and activation of osteoclasts.

Journal ArticleDOI
TL;DR: Findings confirm the complex nature of the regulation of GH secretion at the level of the somatotrope that at least three factors, operating via distinct receptors, are able to increase GH secretion and ascribe a potential physiological role for the hitherto putative hypophysiotropic factor PACAP.
Abstract: GH secretion has been thought traditionally to be regulated by the two hypothalamic hormones, GH-releasing hormone (GHRH) and somatostatin (SRIF). Recent evidence has suggested that other factors may be involved. These factors include the natural ligand for the synthetic hexapeptide GH-releasing peptide (GHRP) and the putative hypophysiotropic factor pituitary adenylate cyclase-activating polypeptide (PA-CAP). Accordingly, we examined the effects of GHRP and PACAP on GH secretion at the single cell level using the reverse hemolytic plaque assay which allows distinction of effects on the number of secreting cells and the amount of hormone each cell secretes. Both factors stimulated GH secretion in a dose-dependent fashion, with PACAP being more effective. PACAP increased both the number of cells secreting and the mean amount of hormone secreted per cell. In contrast, GHRP increased the number of secreting cells, although it had no effect on the amount of secretion per cell. GH secretion induced by GHRH, GH...

Journal ArticleDOI
Cheryl A. Conover1
TL;DR: Cell-associated IGFBP-3 may provide a mechanism for optimal presentation of IGF-I to its receptor as well as a means to heighten receptor reactivity to IGF- I and related peptides.
Abstract: In this study we investigated the mechanism(s) by which insulin-like growth factor-binding protein-3 (IGFBP-3) potentiates IGF-I action in cultured bovine fibroblasts. Preincubation of cells with glycosylated or nonglycosylated recombinant human IGFBP-3 enhanced responsiveness to IGF-I in a time-dependent manner. A preincubation period of at least 24 h with IGFBP-3 was required to see a significant effect. Pretreatment with IGFBP-3 for 72 h resulted in a 2- to 4-fold augmentation of IGF-I-stimulated [3H]aminoisobutyric acid uptake; IGFBP-3 had no effect on basal [3H]aminoisobutyric acid uptake. During the preincubation period, exogenous IGFBP-3 associated with the fibroblast surface and exhibited time-dependent processing to lower mol wt forms that retained the ability to bind radiolabeled IGF-I. Initial surface adherence (preincubation time of 24 h or less) was readily reversible. However, IGFBP-3, once processed, appeared to be closely associated with the cell. After 72 h of exposure to bovine fibroblas...

Journal ArticleDOI
TL;DR: It is proposed that the molecular basis of metformin action in skeletal muscle involves the subcellular redistribution of GLUT1 proteins from an intracellular compartment to the plasma membrane in a recruitment process that facilitates lowering of blood glucose in the management of type II diabetes.
Abstract: The effects of the oral hypoglycemic drug metformin on glucose and amino acid transporter activity and subcellular localization of GLUT1 and GLUT4 glucose transporters were tested in cultured L6 myotubes. In muscle cells preexposed to maximal doses of metformin (2 mM, for 16 h), 2-deoxyglucose uptake was stimulated by over 2-fold from 5.9 +/- 0.3 to 13.3 +/- 0.5 pmol/min.mg protein. Uptake of the nonmetabolizable amino acid analog methylaminoisobutyrate was unaffected by treatment with the drug under identical conditions. Extracellular calcium was required to preserve the full response to the biguanide. Exposure of muscle cells to insulin in the presence of metformin resulted in further activation of 2-deoxyglucose transport. The latter effect was additive to the maximum effect of metformin, suggesting that the biguanide stimulates hexose uptake into muscle cells by an insulin-independent mechanism. Glucose transporter number quantified by performing studies of D-glucose-protectable binding of cytochalasin-B in plasma membranes (PM) and internal membranes (IM) prepared from L6 myotubes revealed that a 16-h treatment with 800 microM metformin significantly elevated glucose transporter number in the PM (by 47%), with an equivalent decrement in glucose transporter number (47%) in the IM. Western blot analysis using antisera reactive with the GLUT1 and GLUT4 isoforms of glucose transporters showed that metformin caused a reduction in GLUT1 content in the IM fraction and a concomitant increase in the PM. Unlike insulin, metformin treatment had no effect on the subcellular distribution of GLUT4. We propose that the molecular basis of metformin action in skeletal muscle involves the subcellular redistribution of GLUT1 proteins from an intracellular compartment to the plasma membrane. Such a recruitment process may form an integral part of the mechanism by which the drug stimulates glucose uptake (and utilization) in skeletal muscle and facilitates lowering of blood glucose in the management of type II diabetes.

Journal ArticleDOI
Julianne Imperato-McGinley1, R S Sanchez1, J R Spencer1, B Yee1, E D Vaughan1 
TL;DR: Results suggest that testosterone (T) can compensate for DHT to some degree at the level of the androgen receptor, despite increasingly higher doses of the antiandrogen flutamide.
Abstract: Studies were performed to compare the effects of 5 alpha-reductase inhibition and antiandrogen receptor blockade on differentiation of male internal and external genital structures and prostate in the rat. Dose-response studies were performed on male rats treated in utero during the period of sexual differentiation with either the potent 5 alpha-reductase inhibitor finasteride or the antiandrogen flutamide. The treated animals were raised to adulthood and killed, and genital structures were evaluated. Treatment with the 5 alpha-reductase inhibitor finasteride at a dose of 25 mg/kg.day resulted in significant feminization of the external genitalia. There was no further feminization of the genitalia at doses up to 300 mg/kg.day. Wolffian ductal differentiation occurred at all doses evaluated. Seminal vesicle weight, however, significantly decreased at 25 mg/kg.day, but without a further decrease at higher doses of the 5 alpha-reductase inhibitor. Vas deferens and epididymal weights were unchanged at all doses evaluated. There was a significant decrease in prostate size at 25 and 50 mg/kg.day, with no further decrease at higher doses. In flutamide-treated animals, complete feminization of the genitalia occurred at 24 mg/kg.day in all animals. At 18 mg/kg.day, Wolffian ductal differentiation occurred, but seminal vesicle weight was decreased. At dosages of 100, 200, and 300 mg/kg.day flutamide, the vas deferens was absent unilaterally or bilaterally, with small remnants of epididymal head and tail present. At dosages of 24 mg/kg.day and above, the prostate was absent. Studies with the 5 alpha-reductase inhibitor finasteride demonstrate the dependency of prostate and male external genital differentiation on dihydrotestosterone (DHT). However, unlike androgen receptor blockade with flutamide, finasteride did not totally abolish prostate differentiation or completely feminize the external genitalia, despite increasingly higher doses. Since there is no evidence of multiple 5 alpha-reductase isoenzymes to date in the rat, these results suggest that testosterone (T) can compensate for DHT to some degree at the level of the androgen receptor. Wolffian differentiation, however, was not affected by inhibition of DHT, demonstrating its T dependency, but seminal vesicle growth was impaired. Thus, inhibition of 5 alpha-reductase activity limits seminal growth potential in adulthood. Studies with the antiandrogen flutamide show that at doses significantly above that required to completely block prostate differentiation and cause genital feminization, Wolffian ductal differentiation is significantly impaired. Thus, higher doses of flutamide are needed to block the paracrine effect of T on the Wolffian ducts.

Journal ArticleDOI
TL;DR: The atresia of ovarian follicles provides an interesting model to further study the molecular events associated with DNA fragmentation and selective mRNA down-regulation during apoptosis, and indicates that apoptotic cell death is initiated in both granulosa and thecal cells of porcine follicles during atResia.
Abstract: Although atresia of ovarian follicles is of critical importance during preovulatory follicle selection as well as during normal and premature menopause, the mechanisms underlying atresia remain poorly understood. To study molecular events associated with atresia, we evaluated changes in mRNA levels for cytochrome P450 aromatase, FSH receptor, LH receptor, and a structural protein, beta-actin, during atresia in small (3-mm diameter) and large (6-mm diameter) porcine follicles. In addition, internucleosomal fragmentation of DNA characteristic of apoptosis ("programmed cell death") was assessed in individual healthy and atretic follicles using a sensitive autoradiographic method. Follicles were classified as morphologically healthy or atretic based on the absence or presence of follicular haemorrhagia and the degree of follicular clarity. Morphological signs of atresia in individual follicles were correlated with the occurrence of internucleosomal DNA fragmentation in granulosa cells as well as in thecal cells during advanced stages of atresia. The presence of apoptosis in atretic follicles was also associated with significant decreases in follicular fluid estrogen concentrations compared to those in healthy follicles of the same size. The decline in estrogen synthesis in degenerating follicles was further correlated with decreased levels of a predominant 2.6-kilobase aromatase mRNA. Moreover, substantial declines in both FSH receptor and LH receptor mRNAs were found in atretic follicles, consistent with previous reports of their decreased responsiveness to gonadotropins. The observed decreases in mRNAs for aromatase and gonadotropin receptors could not be attributed to a generalized degradation of cellular RNA during atresia, as evidenced by the presence of intact 18S and 28S ribosomal RNA as well as constitutive expression of beta-actin mRNA in atretic follicles. These data indicate that apoptotic cell death is initiated in both granulosa and thecal cells of porcine follicles during atresia. Associated with internucleosomal DNA fragmentation, decreased transcription of specific ovarian genes or destabilization of their transcripts leads to selective decreases in aromatase and gonadotropin receptor mRNAs. The atresia of ovarian follicles provides an interesting model to further study the molecular events associated with DNA fragmentation and selective mRNA down-regulation during apoptosis.

Journal ArticleDOI
TL;DR: It is concluded that bone mass in aged male rats was significantly decreased 4 months after orchidectomy, preceded by an early increase in bone turnover, which was prevented by aromatizable and nonaromatsizable androgens by estrogen and by nandralone.
Abstract: Both short and long term effects of androgen deficiency and steroid replacement therapy on skeletal homeostasis were investigated in aged (13-month-old) male rats. The animals were either sham operated (n = 28) or orchidectomized (orch; n = 89). The orch animals were divided into 5 groups; 26 rats received an empty sc Silastic implant (orch), all others received an implant containing testosterone (T), 5 alpha-dihydrotestosterone (DHT), 17 beta-estradiol (E2), or nandrolone (Nandro; 15-16 rats in each group). Half of the rats were killed 1 month (short term experiment) after implantation; the others were killed 4 months after implantation (long term experiment). Short term androgen deficiency caused a significant increase in both serum osteocalcin and histomorphometric parameters of bone turnover measured at the proximal tibial metaphysis, but not in a significant decrease in bone mass at this site. This increase in bone turnover was prevented not only by T and DHT, but also by E2 and Nandro. Long term and...

Journal ArticleDOI
TL;DR: During fetal and early post natal life, GLUT-1 is a predominant glucose transporter isotype expressed in heart, skeletal muscle, and brown adipose tissue, and therefore regulation at a pretranslational level plays a major regulatory role.
Abstract: The expression of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporters was assessed during development in rat heart, skeletal muscle, and brown adipose tissue. GLUT-4 protein expression was detectable in fetal heart by day 21 of pregnancy; it increased progressively after birth, attaining levels close to those of adults at day 15 post natal. In contrast, GLUT-4 messenger RNA (mRNA) was already present in hearts from 17 day-old fetuses. GLUT-4 mRNA stayed low during early postnatal life in heart and brown adipose tissue and only increased after day 10 post natal. The expression pattern for GLUT-4 protein in skeletal muscle during development was comparable to that observed in heart. In contrast to heart and skeletal muscle, GLUT-4 protein in brown adipose tissue was detected in high levels (30% of adult) during late fetal life. During fetal life, GLUT-1 presented a very high expression level in brown adipose tissue, heart, and skeletal muscle. Soon after birth, GLUT-1 protein diminished progressively, attaining adult levels at day 10 in heart and skeletal muscle. GLUT-1 mRNA levels in heart followed a similar pattern to the GLUT-1 protein, being very high during fetal life and decreasing early in post natal life. GLUT-1 protein showed a complex pattern in brown adipose tissue: fetal levels were high, decreased after birth, and increased subsequently in post natal life, reaching a peak by day 9. Progesterone-induced postmaturity protected against the decrease in GLUT-1 protein associated with post natal life in skeletal muscle and brown adipose tissue. However, GLUT-4 induction was not blocked by postmaturity in any of the tissues subjected to study. These results indicate that: 1) during fetal and early post natal life, GLUT-1 is a predominant glucose transporter isotype expressed in heart, skeletal muscle, and brown adipose tissue; 2) during early post natal life there is a generalized GLUT-1 repression; 3) during development, there is a close correlation between protein and mRNA levels for GLUT-1, and therefore regulation at a pretranslational level plays a major regulatory role; 4) the onset of GLUT-4 protein induction occurs between days 20-21 of fetal life; based on data obtained in rat heart and brown adipose tissue, there is a dissociation during development between mRNA and protein levels for GLUT-4, suggesting modifications at translational or posttranslational steps; and 5) postmaturity blocks the decrease in GLUT-1 expression but not the induction of GLUT-4, observed soon after birth.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal ArticleDOI
TL;DR: It is demonstrated that multiple cytokines can increase lipolysis and that this increase is mediated by cytokine-induced stimulation of prostaglandin synthesis.
Abstract: Multiple cytokines induce a number of alterations in lipid metabolism which can produce hyperlipidemia. Recent studies have demonstrated that tumor necrosis factor (TNF) increases lipolysis, resulting in an increase in circulating FFA levels, which stimulates hepatic triglyceride production, thereby contributing to the hyperlipidemia induced by TNF. In the present investigation we have determined the effects of a variety of cytokines on lipolysis in cultured 3T3-F442A adipocytes. TNF increased lipolysis approximately 3-fold with a maximal effect at 100 ng/ml and a half-maximal increase at 5-10 ng/ml. This increase was first observed 8 h after incubation with TNF. Interleukin-1 (IL-1) and interferon-alpha (IFN), -beta, and -gamma also stimulated lipolysis in cultured adipocytes. The half-maximal increase in lipolysis occurred at approximately 10 ng/ml IL-1, 5 ng/ml IFN alpha, 10 ng/ml IFN beta, and 8 ng/ml of IFN gamma. Maximal lipolysis was observed at approximately 100 ng/ml for each of these cytokines, with the exception of IFN beta, for which maximal stimulation was observed at 1000 ng/ml. Neither platelet-activating factor nor IL-6 stimulated lipolysis; therefore, it is unlikely that these compounds mediate the increase in lipolysis induced by cytokines. However, indomethacin, a well known inhibitor of prostaglandin synthesis, prevented the increase in lipolysis induced by TNF, IL-1, IFN alpha, IFN beta, or IFN gamma. Indomethacin did not affect basal lipolysis or the acute stimulation of lipolysis induced by epinephrine. These results demonstrate that multiple cytokines can increase lipolysis and that this increase is mediated by cytokine-induced stimulation of prostaglandin synthesis.

Journal ArticleDOI
TL;DR: The results of these studies demonstrate that estrogen receptor mRNA levels are sexually dimorphic, vary during the estrous cycle, and increase after ovariectomy, and suggest that factors other than endogenous estrogen levels differentially modulate estrogen receptor RNA expression in the hypothalamus.
Abstract: Variations in levels of estrogen receptor mRNA were investigated in the medial preoptic nucleus, arcuate nucleus, and ventromedial nucleus of the hypothalamus throughout the phases of the female estrous cycle and compared with those in ovariectomized female and intact male rats. Female Wistar rats were killed during estrus, metestrus, diestrus, or proestrus or 72 h after ovariectomy as were a group of intact male rats. Brains were removed and frozen, and 20-microns cryostat sections were thaw-mounted onto slides and hybridized with a 35S-labeled antisense estrogen receptor probe. Section-mounted slides were processed, apposed to x-ray film, then dipped in liquid emulsion, and quantified. After exposure, estrogen receptor mRNA was detected in several brain regions, including the medial preoptic nucleus, arcuate nucleus, and ventromedial nucleus of the hypothalamus. Estrogen receptor mRNA levels in the medial preoptic nucleus were highest during estrus and metestrus, attenuated at diestrus, and low during proestrus. In contrast, the hybridization signal in the arcuate and ventromedial nuclei was low during estrus and then gradually increased throughout the cycle until it peaked during proestrus. Ovariectomized females exhibited an elevated level of estrogen receptor mRNA in all brain regions investigated. Hybridization signal in male medial preoptic nucleus and ventromedial nucleus was reduced compared with those in both intact and ovariectomized females. Estrogen receptor mRNA levels in the arcuate nucleus were similar to those in intact females, but less than those in ovariectomized animals. The results of these studies demonstrate that estrogen receptor mRNA levels are sexually dimorphic, vary during the estrous cycle, and increase after ovariectomy. Furthermore, these results indicate that the magnitude and direction of change observed during the estrous cycle are region specific and suggest that factors other than endogenous estrogen levels differentially modulate estrogen receptor mRNA expression in the hypothalamus.

Journal ArticleDOI
TL;DR: In situ hybridization histochemistry showed high levels of V1aR transcripts in the liver and the renal medulla among the vascular bundles, and subcloned DNA fragments containing the region encoding the putative 5/6 transmembrane loops of these receptors demonstrated that kidney expresses mRNAs encoding V 1a and V2 vasopressin receptors.
Abstract: The hepatic, vascular-type (V1aR) and the renal, antidiuretic-type (V2R) vasopressin receptor cDNAs were recently cloned from rat liver and kidney libraries, respectively. DNA fragments containing the region encoding the putative 5/6 transmembrane loops of these receptors were subcloned, separately, into RNA polymerase promoter-containing vectors from which 35S-labeled sense and antisense riboprobes were synthesized. In situ hybridization histochemistry showed high levels of V1aR transcripts in the liver and the renal medulla among the vascular bundles. Sparser labeling was found in the renal cortex, but there were no grains over the glomeruli. V1aR mRNA was detected in many brain areas, including the hippocampal formation, central amygdala, dorsolateral septum, lateral hypothalamus, suprachiasmatic, ventromedial, dorsomedial, and arcuate nuclei of the hypothalamus, nucleus of the solitary tract, cerebellum, spinal nucleus of the trigeminal tract, reticular formation, inferior olivary nucleus, and choroid...

Journal ArticleDOI
TL;DR: The time course of the neuroendocrine response of Piebald-Viral-Glaxo (PVG) rats during the development of mycobacterially induced adjuvant arthritis is determined and a common paradox of a marked increase in adenohypophyseal POMC mRNA not associated with increased CRF mRNA or peptide release is shown.
Abstract: We have determined the time course of the neuroendocrine response of Piebald-Viral-Glaxo (PVG) rats during the development of mycobacterially induced adjuvant arthritis. Anterior pituitary POMC mRNA increased at the time of onset of mycobacterially induced arthritis, but, paradoxically, coincident with the first signs of arthritis there was a consistent fall in CRF mRNA in the hypothalamic paraventricular nucleus. Coincident with this fall in CRF message, there was a corresponding decrease in CRF-41 peptide release into the hypophysial portal blood (HPB). In contrast, however, vasopressin release into the HPB was increased. There was an increase in adrenal weight associated with the development of arthritis, reflecting chronic activation of the HPA axis, which was reflected by increased circulating corticosterone concentrations. The synthetic adjuvant CP20961, which has different antigenic determinants, also caused an increase in POMC mRNA in the anterior pituitary, a decrease in CRF mRNA in the hypothala...

Journal ArticleDOI
TL;DR: Results indicate that in addition to regulating the activity of neurons, estrogen may affect brain function through effects exerted on astrocytes, ependymal cells, and endothelial cells.
Abstract: The presence of estrogen receptors (ERs) in nonneural cells in brain, including glia, ependyma, and endothelia, has not previously been documented with electron microscopy. This study employed immunocytochemistry to investigate whether ER immunoreactivity (ER-ir) is present in glial, ependymal, or endothelial cells in the medial preoptic area (POA) and median eminence (ME) in the brain of gonadally intact female guinea pigs. Tissue sections through these regions were immunostained with monoclonal antibody H222 for ER localization using 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogen. ER-ir cells were identified ultrastructurally by the presence of distinct spicule-like TMB crystals in nuclei. While neurons constituted the clear majority of ER-immunopositive cells, labeled astrocytes, ependyma, and endothelia were also present. Distinct intranuclear TMB crystals were present in astrocytes at the anterior pole of the POA within the preventricular periventricular nucleus, anterior compact subnucleus of the medial preoptic nucleus (MPNa), and organum vasculosum of the lamina terminalis, indicating ER-ir. In the MPNa, cell counts performed at the ultrastructural level revealed that 9.6% (15 of 156) of the astrocytes were ER-ir. To further explore the relationship of ERs with astrocytes, ER/glial fibrillary acidic protein (GFAP) double labeling experiments were performed using TMB and diaminobenzidine tetrahydrochloride for ER and GFAP localization, respectively. These studies verified the presence of ERs in astrocytes at the anterior pole of the POA and demonstrated the presence of ERs in GFAP-ir cells in the ME. Cell counts at the ME showed that 23 of 50 (46%) GFAP-ir cells were ER-ir. ER-ir was also present in scattered ependymal cells lining the third ventricle at the POA and overlying the ME. Typically, approximately four to eight ER-ir ependymal cells were present around the perimeter of the third ventricle, although occasionally small aggregations of greater numbers of labeled cells were observed. Both common ependyma and cells morphologically identified as tanycytes were ER-ir. Some endothelial cells and vascular smooth muscle cells also contained ERs. While approximately 11% of the vessels were lined by ER-ir cells in sections through the MPNa and preventricular periventricular nucleus, approximately 15% of the vessels were labeled in the organum vasculosum of the lamina terminalis. In the ME a greater percentage (59%) of the vessels contained ER-ir endothelial cells. Collectively, these results indicate that in addition to regulating the activity of neurons, estrogen may affect brain function through effects exerted on astrocytes, ependymal cells, and endothelial cells.

Journal ArticleDOI
TL;DR: The increase in the number of Sertoli cells per testis in PTU treated rats, as has been reported in the present study, is likely to be responsible for the increased testis size observed by other groups in these animals, when adult.
Abstract: In this study we show that 6-propyl-2-thiouracil (PTU) treatment of Wistar rats from birth up to day 26 p.p. retards the morphological differentiation of Sertoli cells, and prolongs the proliferation of these cells up to day 30. Sertoli cell numbers per testis, determined at day 36, were increased by 84% compared to controls. PTU treatment increased serum thyroid-stimulating hormone (TSH) levels and reduced serum levels of thyroxine (T4) from 5 days onwards, indicative of severe hypothyroidism. Follicle-stimulating hormone (FSH) levels were reduced from day 5 to 9, normal at day 12 and 16, and reduced again from day 20 to 36. Inhibin levels were decreased from day 9 to 20 and increased at 36 days of age. The increase in the number of Sertoli cells per testis in PTU treated rats, as has been reported in the present study, is likely to be responsible for the increased testis size observed by other groups (1) in these animals, when adult.

Journal ArticleDOI
TL;DR: The isolation and characterization of the human type II 5alpha-reductase gene is described, the gene most likely responsible for male pseudohermaphroditism due to 5 alpha- reductase deficiency as well as the one presumed to be involved in a major androgen-related diseases such as prostate cancer and benign prostatic hyperplasia.
Abstract: The best known activity of steroid 5 alpha-reductase is the transformation of testosterone into dihydrotestosterone, the most potent androgen. Two types of human steroid 5 alpha-reductase cDNAs and the type I gene have previously been isolated and characterized. This report describes the isolation and characterization of the human type II 5 alpha-reductase gene, the gene most likely responsible for male pseudohermaphroditism due to 5 alpha-reductase deficiency as well as the one presumed to be involved in a major androgen-related diseases such as prostate cancer and benign prostatic hyperplasia. The type II 5 alpha-reductase gene contains five exons of 352, 164, 102, 151 and 1695 bp, respectively, which share 43.8% to 64.1% homology with exons of the corresponding type I gene. These exons are separated by four introns of greater than 29, and approximately 2.3, 2.0 and 3.0 kb. Analysis of primer extension products by polyacrylamide gel electrophoresis as well as by subcloning and sequencing reveals a start...