scispace - formally typeset
Search or ask a question

Showing papers in "Faraday Discussions in 2017"


Journal ArticleDOI
TL;DR: The role of the closing lecture in a Faraday Discussion is to summarise the contributions made to the Discussion over the course of the meeting and in so doing capture the main themes that have arisen, which have been grouped into the four themes: fundamentals, beyond the halogen bond, characterisation, and applications.
Abstract: The role of the closing lecture in a Faraday Discussion is to summarise the contributions made to the Discussion over the course of the meeting and in so doing capture the main themes that have arisen. This article is based upon my Closing Remarks Lecture at the 203rd Faraday Discussion meeting on Halogen Bonding in Supramolecular and Solid State Chemistry, held in Ottawa, Canada, on 10-12th July, 2017. The Discussion included papers on fundamentals and applications of halogen bonding in the solid state and solution phase. Analogous interactions involving main group elements outside group 17 were also examined. In the closing lecture and in this article these contributions have been grouped into the four themes: (a) fundamentals, (b) beyond the halogen bond, (c) characterisation, and (d) applications. The lecture and paper also include a short reflection on past work that has a bearing on the Discussion.

135 citations


Journal ArticleDOI
TL;DR: By combining direct observations and conceptual modelling, the variability of the survival parameter P in different environments is explored and the reasons for NPF occurrence under highly-polluted conditions are probed.
Abstract: In terms of the global aerosol particle number load, atmospheric new particle formation (NPF) dominates over primary emissions. The key for quantifying the importance of atmospheric NPF is to understand how gas-to-particle conversion (GTP) takes place at sizes below a few nanometers in particle diameter in different environments, and how this nano-GTP affects the survival of small clusters into larger sizes. The survival probability of growing clusters is tied closely to the competition between their growth and scavenging by pre-existing aerosol particles, and the key parameter in this respect is the ratio between the condensation sink (CS) and the cluster growth rate (GR). Here we define their ratio as a dimensionless survival parameter, P, as P = (CS/10−4 s−1)/(GR/nm h−1). Theoretical arguments and observations in clean and moderately-polluted conditions indicate that P needs to be smaller than about 50 for a notable NPF to take place. However, the existing literature shows that in China, NPF occurs frequently in megacities such as in Beijing, Nanjing and Shanghai, and our analysis shows that the calculated values of P are even larger than 200 in these cases. By combining direct observations and conceptual modelling, we explore the variability of the survival parameter P in different environments and probe the reasons for NPF occurrence under highly-polluted conditions.

121 citations


Journal ArticleDOI
TL;DR: In this paper, surface force measurements were used to test the scaling of the screening length with the Bjerrum length for concentrated electrolytes, and they showed that the decay length is an increasing function of ion concentration.
Abstract: Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

118 citations


Journal ArticleDOI
TL;DR: It is shown how all of these interactions - and hydrogen bonds - can be readily understood through their common origin in the redistribution of electron density that results from chemical bonding.
Abstract: Structure–property relationships are the key to modern crystal engineering, and for molecular crystals this requires both a thorough understanding of intermolecular interactions, and the subsequent use of this to create solids with desired properties. There has been a rapid increase in publications aimed at furthering this understanding, especially the importance of non-canonical interactions such as halogen, chalcogen, pnicogen, and tetrel bonds. Here we show how all of these interactions – and hydrogen bonds – can be readily understood through their common origin in the redistribution of electron density that results from chemical bonding. This redistribution is directly linked to the molecular electrostatic potential, to qualitative concepts such as electrostatic complementarity, and to the calculation of quantitative intermolecular interaction energies. Visualization of these energies, along with their electrostatic and dispersion components, sheds light on the architecture of molecular crystals, in turn providing a link to actual crystal properties.

93 citations


Journal ArticleDOI
TL;DR: It is demonstrated how simple changes at the molecular level translate into significant differences in atomic-scale structure, nanoscale morphology and optoelectronic properties, which greatly affect the photocatalytic hydrogen evolution efficiency.
Abstract: Organic solids such as covalent organic frameworks (COFs), porous polymers and carbon nitrides have garnered attention as a new generation of photocatalysts that offer tunability of their optoelectronic properties both at the molecular level and at the nanoscale. Owing to their inherent porosity and well-ordered nanoscale architectures, COFs are an especially attractive platform for the rational design of new photocatalysts for light-induced hydrogen evolution. In this report, our previous design strategy of altering the nitrogen content in an azine-linked COF platform to tune photocatalytic hydrogen evolution is extended to a pyridine-based photocatalytically active framework, where nitrogen substitution in the peripheral aryl rings reverses the polarity compared to the previously studied materials. We demonstrate how simple changes at the molecular level translate into significant differences in atomic-scale structure, nanoscale morphology and optoelectronic properties, which greatly affect the photocatalytic hydrogen evolution efficiency. In an effort to understand the complex interplay of such factors, we carve out the conformational flexibility of the PTP-COF precursor and the vertical radical anion stabilization energy as important descriptors to understand the performance of the COF photocatalysts.

90 citations


Journal ArticleDOI
TL;DR: The various photovoltaic-powered electrochemical, photoelectrochemical and photocatalytic processes are described and a description of a possible artificial photosynthesis plant is presented, along with a discussion of the economic aspects of operating such a plant and potential reactor designs.
Abstract: Both solar water splitting and carbon dioxide reduction using semiconductor systems have been studied as important components of artificial photosynthesis. This paper describes the various photovoltaic-powered electrochemical, photoelectrochemical and photocatalytic processes. An overview of the state-of-the-art is presented along with a summary of recent research approaches. A concept developed by our own research group in which fixed particulate photocatalysts are applied to scalable solar water splitting is discussed. Finally, a description of a possible artificial photosynthesis plant is presented, along with a discussion of the economic aspects of operating such a plant and potential reactor designs.

89 citations


Journal ArticleDOI
TL;DR: Flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept are focused on.
Abstract: Biorefineries have been established since the 1980s for biofuel production, and there has been a switch lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. To a lesser extent, many opportunities have been investigated for producing chemicals from biomass using by-products of the present biorefineries, simple waste streams. Current facilities apply intensive pre-treatments to deal with single substrate types such as carbohydrates. However, most organic streams such as municipal solid waste or algal blooms present a high complexity and variable mixture of molecules, which makes specific compound production and separation difficult. Here we focus on flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept.

84 citations


Journal ArticleDOI
TL;DR: The models behind simple bonding theory and the origins of some components often proposed to be involved in weak intermolecular bonds are described with special reference to σ-hole bonding, of which halogen bonds are a subset.
Abstract: The models behind simple bonding theory and the origins of some components often proposed to be involved in weak intermolecular bonds are described with special reference to σ-hole bonding, of which halogen bonds are a subset. A protocol for the analysis of weak intermolecular interactions is proposed on the basis of sound physical principles. This protocol uses three different levels of interaction; “permanent” Coulomb interactions between unperturbed monomers, relaxed Coulomb interactions and dispersion. Of the three, only dispersion is not a real, measurable quantity. It is, however, included in order to describe interactions that cannot be treated entirely by the first two levels.

84 citations


Journal ArticleDOI
TL;DR: X-ray photoelectron spectroscopy and X-ray diffraction revealed the changes in the structure of the PdZn alloy that help stabilise formate intermediates during methanol synthesis.
Abstract: The formation of PdZn bimetallic alloys on ZnO, TiO2 and Al2O3 supports was investigated, together with the effect of alloy formation on the CO2 hydrogenation reaction. The chemical vapour impregnation (CVI) method produced PdZn nanoparticles with diameters of 3–6 nm. X-ray photoelectron spectroscopy and X-ray diffraction revealed the changes in the structure of the PdZn alloy that help stabilise formate intermediates during methanol synthesis. PdZn supported on TiO2 exhibits high methanol productivity of 1730 mmol kgcat−1 h−1 that is associated with the high dispersion of the supported PdZn alloy.

74 citations


Journal ArticleDOI
TL;DR: Improvements in the production rate and different biomass retention strategies should be investigated to enable continuous biochemical production from CO2 using MES, and other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals fromCO2 as a next generation feedstock.
Abstract: The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO2 as a feedstock for chemicals is gaining much attention, since CO2 is abundantly available and its use is independent of the food supply chain. MES based on CO2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO2 : N2 gas. The highest acetate production rate of 149 mg L−1 d−1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L−1 d−1. In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO2 as a next generation feedstock.

73 citations


Journal ArticleDOI
TL;DR: It is shown that the SERS enhancement is caused by combinations of several types of resonances in the combined system, namely, surface, exciton, charge-transfer, and molecular resonances, and ways to optimize the enhancement factor by tailoring the semiconductor nanostructure, thereby adjusting the locations of the various contributing resonances.
Abstract: We present an expression for the lowest order nonzero contribution to the surface-enhanced Raman spectrum obtained from a system of a molecule adsorbed on a semiconductor nanoparticle. Herzberg–Teller vibronic coupling of the zero-order Born–Oppenheimer states results in an expression which may be regarded as an extension of the Albrecht A-, B-, and C-terms to SERS substrates. We show that the SERS enhancement is caused by combinations of several types of resonances in the combined system, namely, surface, exciton, charge-transfer, and molecular resonances. These resonances are coupled by terms in the numerator, which provide selection rules that enable various tests of the theory and predict the relative intensities of the Raman lines. Furthermore, by considering interactions of the various contributions to the SERS enhancement, we are able to develop ways to optimize the enhancement factor by tailoring the semiconductor nanostructure, thereby adjusting the locations of the various contributing resonances. This provides a procedure by which molecular sensors can be constructed and optimized. We provide several experimental examples on substrates such as monolayer MoS2 and GaN nanorods.

Journal ArticleDOI
TL;DR: The results suggest that regions of the world where the ratio of NH3 : SO2 emissions is beginning to exceed 2 on a molar basis may be experiencing rapid increases in aerosol pH of 1-3 pH units, which could have important consequences for the rates of condensed phase reactions that are acid-catalyzed.
Abstract: In many parts of the world, the implementation of air quality regulations has led to significant decreases in SO2 emissions with minimal impact on NH3 emissions. In Canada and the United States, the molar ratio of NH3 : SO2 emissions has increased dramatically between 1990 and 2014. In many regions of North America, this will lead the molar ratio of NHx : SO4, where NHx is the sum of particle phase NH4+ and gas phase NH3, and SO4 is the sum of particle phase HSO4− and SO42−, to exceed 2. A thermodynamic model (E-AIM model II) is used to investigate the sensitivity of particle pH, and the gas-particle partitioning of NHx and inorganic nitrate, to the atmospheric NHx : SO4 ratio. Steep increases in pH and the gas fraction of NHx are found as NHx : SO4 varies from below 1 to above 2. The sensitivity of the gas fraction of nitrate also depends strongly on temperature. The results show that if NHx : SO4 exceeds 2, and the gas and particle phase NHx are in equilibrium, the particle pH will be above 2. Observations of the composition of particulate matter and gas phase NH3 from two field campaigns in southern Canada in 2007 and 2012 have median NHx : SO4 ratios of 3.8 and 25, respectively. These campaigns exhibited similar amounts of NH3, but very different particle phase loadings. Under these conditions, the pH values calculated using the observations as input to the E-AIM model were in the range of 1–4. The pH values were typically higher at night because the higher relative humidity increased the particle water content, diluting the acidity. The assumption of equilibration between the gas and particle phase NHx was evaluated by comparing the observed and modelled gas fraction of NHx. In general, E-AIM was able to reproduce the partitioning well, suggesting that the dominant constituents contributing to particle acidity were measured, and that the estimated pH values were realistic. These results suggest that regions of the world where the ratio of NH3 : SO2 emissions is beginning to exceed 2 on a molar basis may be experiencing rapid increases in aerosol pH of 1–3 pH units. This could have important consequences for the rates of condensed phase reactions that are acid-catalyzed.

Journal ArticleDOI
TL;DR: A variational theory of thermodynamic stability is developed for driven reactive mixtures, based on a nonlinear generalization of the Cahn-Hilliard and Allen-Cahn equations, and the Glansdorff-Prigogine stability criterion is extended for driving chemical work.
Abstract: Motivated by the possibility of electrochemical control of phase separation, a variational theory of thermodynamic stability is developed for driven reactive mixtures, based on a nonlinear generalization of the Cahn–Hilliard and Allen–Cahn equations. The Glansdorff–Prigogine stability criterion is extended for driving chemical work, based on variations of nonequilibrium Gibbs free energy. Linear stability is generally determined by the competition of chemical diffusion and driven autocatalysis. Novel features arise for electrochemical systems, related to controlled total current (galvanostatic operation), concentration-dependent exchange current (Butler–Volmer kinetics), and negative differential reaction resistance (Marcus kinetics). The theory shows how spinodal decomposition can be controlled by solo-autocatalytic charge transfer, with only a single faradaic reaction. Experimental evidence is presented for intercalation and electrodeposition in rechargeable batteries, and further applications are discussed in solid state ionics, electrovariable optics, electrochemical precipitation, and biological pattern formation.

Journal ArticleDOI
TL;DR: Reticular chemistry, the linking of molecular building units by strong bonds to make crystalline, extended structures such as metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), and covalent organic frameworks (COFs), is currently one of the most rapidly expanding fields of science as discussed by the authors.
Abstract: Reticular chemistry, the linking of molecular building units by strong bonds to make crystalline, extended structures such as metal–organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), and covalent organic frameworks (COFs), is currently one of the most rapidly expanding fields of science. In this contribution, we outline the origins of the field; the key intellectual and practical contributions, which have led to this expansion; and the new directions reticular chemistry is taking that are changing the way we think about making new materials and the manner with which we incorporate chemical information within structures to reach additional levels of functionality. This progress is described in the larger context of chemistry and unexplored, yet important, aspects of this field are presented.

Journal ArticleDOI
TL;DR: The ionoSolv pretreatment is a new technique employing protic low-cost ionic liquids and has previously been applied to successfully fractionate switchgrass and the grass Miscanthus giganteus and showed that it was able to increase enzymatic glucose yields compared to untreated willow biomass.
Abstract: The ionoSolv pretreatment is a new technique employing protic low-cost ionic liquids and has previously been applied to successfully fractionate switchgrass and the grass Miscanthus giganteus. This study investigates the effect of using the protic ionic liquid solution [N2220][HSO4]80% with two different acid/base ratios (1.02 and 0.98) at 120, 150 and 170 °C on the pretreatment outcome of the hardwood willow. The ionic liquid solution was able to fractionate willow, and a pulp and lignin fraction were recovered after treatment. The pretreatment success was determined via enzymatic hydrolysis of the pulp, which showed that the ionoSolv pretreatment was able to increase enzymatic glucose yields compared to untreated willow biomass. The pretreatment produced a cellulose-rich pulp with high hemicellulose and lignin removal. The pulp composition and glucose yield after saccharification were greatly influenced by the acidity of the ionic liquid solution, temperature and pretreatment time. The extracted lignin was analysed via 2-D HSQC NMR spectroscopy and GPC to investigate the changes in the lignin structure induced by the pretreatment severity. The lignin structure (in terms of inter-unit linkages and S/G ratio) and molecular weight varied significantly depending on the pretreatment conditions used.

Journal ArticleDOI
TL;DR: CO2 reduction of artificial photosynthesis is successfully demonstrated using a simple Z-scheme system in which two kinds of photocatalyst powders were only dispersed in water under 1 atm of CO2.
Abstract: CuGaS2, (AgInS2)x–(ZnS)2−2x, Ag2ZnGeS4, Ni- or Pb-doped ZnS, (ZnS)0.9–(CuCl)0.1, and ZnGa0.5In1.5S4 showed activities for CO2 reduction to form CO and/or HCOOH in an aqueous solution containing K2SO3 and Na2S as electron donors under visible light irradiation. Among them, CuGaS2 and Ni-doped ZnS photocatalysts showed relatively high activities for CO and HCOOH formation, respectively. CuGaS2 was applied in a powdered Z-scheme system combining with reduced graphene oxide (RGO)-incorporated TiO2 as an O2-evolving photocatalyst. The powdered Z-scheme system produced CO from CO2 in addition to H2 and O2 due to water splitting. Oxygen evolution with an almost stoichiometric amount indicates that water was consumed as an electron donor in the Z-schematic CO2 reduction. Thus, we successfully demonstrated CO2 reduction of artificial photosynthesis using a simple Z-scheme system in which two kinds of photocatalyst powders (CuGaS2 and an RGO–TiO2 composite) were only dispersed in water under 1 atm of CO2.

Journal ArticleDOI
TL;DR: HCl is a promising alternative to the metal triflates as a co-catalyst in the reductive fraction of woody biomass.
Abstract: The ‘lignin-first’ approach has recently gained attention as an alternative whole biomass pretreatment technology with improved yield and selectivity of aromatics compared with traditional upgrading processes using technical lignins. Metal triflates are effective co-catalysts that considerably speed up the removal of lignin fragments from the whole biomass. As their cost is too high in a scaled-up process, we explored here the use of HCl, H2SO4, H3PO4 and CH3COOH as alternative acid co-catalysts for the tandem reductive fractionation process. HCl and H2SO4 were found to show superior catalytic performance over H3PO4 and CH3COOH in model compound studies that simulate lignin–carbohydrate linkages (phenyl glycoside, glyceryl trioleate) and lignin intralinkages (guaiacylglycerol-β-guaiacyl ether). HCl is a promising alternative to the metal triflates as a co-catalyst in the reductive fraction of woody biomass. Al(OTf)3 and HCl, respectively, afforded 46 wt% and 44 wt% lignin monomers from oak wood sawdust in tandem catalytic systems with Pd/C at 180 °C in 2 h. The retention of cellulose in the solid residue was similar.

Journal ArticleDOI
TL;DR: It is shown that UiO-66-(SH)2 meets all criteria for the application of MOFs in real-life circumstances, including stability and recyclability of the adsorbents, selectivity for the targeted Hg species in the presence of much higher concentrations of interfering species, and ability to purify wastewater below international environmental limits within a short time.
Abstract: The dithiol functionalized UiO-66-(SH)2 is developed as an efficient adsorbent for the removal of mercury in aqueous media. Important parameters for the application of MOFs in real-life circumstances include: stability and recyclability of the adsorbents, selectivity for the targeted Hg species in the presence of much higher concentrations of interfering species, and ability to purify wastewater below international environmental limits within a short time. We show that UiO-66-(SH)2 meets all these criteria.

Journal ArticleDOI
TL;DR: Techno-economic analysis demonstrates that this approach can produce HDO and PDO at a minimum selling price of $4090 per ton.
Abstract: Catalytic strategies for the synthesis of 1,5-pentanediol (PDO) with 69% yield from hemicellulose and the synthesis of 1,6-hexanediol (HDO) with 28% yield from cellulose are presented. Fractionation of lignocellulosic biomass (white birch wood chips) in gamma-valerolactone (GVL)/H2O generates a pure cellulose solid and a liquid stream containing hemicellulose and lignin, which is further dehydrated to furfural with 85% yield. Furfural is converted to PDO with sequential dehydration, hydration, ring-opening tautomerization, and hydrogenation reactions. Acid-catalyzed cellulose dehydration in tetrahydrofuran (THF)/H2O produces a mixture of levoglucosenone (LGO) and 5-hydroxymethylfurfural (HMF), which are converted with hydrogen to tetrahydrofuran-dimethanol (THFDM). HDO is then obtained from hydrogenolysis of THFDM. Techno-economic analysis demonstrates that this approach can produce HDO and PDO at a minimum selling price of $4090 per ton.

Journal ArticleDOI
TL;DR: The aggregation-induced emission (AIE) properties of o-carborane derivatives are presented and a potential strategy for constructing AIE-active organoboron complexes via the enhancement of freedom of intramolecular mobility is proposed.
Abstract: This paper presents the aggregation-induced emission (AIE) properties of o-carborane derivatives and proposes a potential strategy for constructing AIE-active organoboron complexes via the enhancement of freedom of intramolecular mobility. Initially, the optical properties of o-carborane derivatives with or without the fused ring structure at the C–C bond in o-carborane in which elongation should be induced by photo-excitation according to theoretical calculations were compared. Accordingly, it was shown that large mobility at the C–C bond in o-carborane should be responsible for the annihilation of emission in solution, leading to the AIE property. From this result, it was presumed that by enhancing the freedom of intramolecular mobility in conventional luminescent organoboron complexes, the deactivation of the excited state in solution and emission recovery in the aggregate can be induced. Based on this idea, we have performed several studies and introduce two representative results. Firstly, the decrease in luminescent properties of boron dipyrromethene (BODIPY) in solution by introducing a movable functional group is explained. Next, the AIE behaviors of boron ketoiminates and the potential mechanism concerning conformational changes for the deactivation of the excited state in the solution state are illustrated. It is proposed that enhancement of the freedom of mobility in the excited state of luminescent organoboron complexes could be a potential strategy for realizing AIE behaviors.

Journal ArticleDOI
TL;DR: Analysis of atomic layer deposition of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels, which underscores the importance of probing these systems in situ.
Abstract: We explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis of in situ synchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. These analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °C produces metallic Cu0 of two distinct particle sizes: ∼4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu0–NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu2O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systems in situ.

Journal ArticleDOI
TL;DR: Examples of both types of close contacts, defined as interatomic separations less than the sum of the respective van der Waals radii, are given and discussed, focusing in particular upon σ-hole interactions.
Abstract: Close contacts, defined as interatomic separations less than the sum of the respective van der Waals radii, are commonly invoked to identify attractive nonbonded interactions in crystal lattices. While this is often effective, it can also be misleading because (a) there are significant uncertainties associated with van der Waals radii, and (b) it may not be valid to attribute the interactions solely to specific pairs of atoms. The interactions within crystal lattices are Coulombic, and the strongest positive and/or negative regions do not always correspond to the positions of atoms; they are sometimes located between atoms. Examples of both types are given and discussed, focusing in particular upon σ-hole interactions.

Journal ArticleDOI
TL;DR: The synergetic effects of the pre-intercalation of K+ ions are demonstrated to improve the charge storage of multivalent ions, as well as tune the mechanical and actuation properties of the Ti3C2 MXene.
Abstract: Two-dimensional materials, such as MXenes, are attractive candidates for energy storage and electrochemical actuators due to their high volume changes upon ion intercalation. Of special interest for boosting energy storage is the intercalation of multivalent ions such as Mg2+, which suffers from sluggish intercalation and transport kinetics due to its ion size. By combining traditional electrochemical characterization techniques with electrochemical dilatometry and contact resonance atomic force microscopy, the synergetic effects of the pre-intercalation of K+ ions are demonstrated to improve the charge storage of multivalent ions, as well as tune the mechanical and actuation properties of the Ti3C2 MXene. Our results have important implications for quantitatively understanding the charge storage processes in intercalation compounds and provide a new path for studying the mechanical evolution of energy storage materials.

Journal ArticleDOI
TL;DR: After incorporation of thermal and entropic effects, the halogen, chalcogen, and pnicogen bonding receptors do not represent much of an improvement over H-bonds with regard to this selectivity for F-, even I which binds quite strongly.
Abstract: A series of halide receptors are constructed and the geometries and energetics of their binding to F−, Cl−, and Br− assessed by quantum calculations. The dicationic receptors are based on a pair of imidazolium units, connected via a benzene spacer. The imidazoliums each donate a proton to a halide in a pair of H-bonds. Replacement of the two bonding protons by Br leads to binding via a pair of halogen bonds. Likewise, chalcogen, pnicogen, and tetrel bonds occur when the protons are replaced, respectively, by Se, As, and Ge. Regardless of the binding group considered, F− is bound much more strongly than are Cl− and Br−. With respect to the latter two halides, the binding energy is not very sensitive to the nature of the binding atom, whether H or some other atom. But there is a great deal of differentiation with respect to F−, where the order varies as tetrel > H ∼ pnicogen > halogen > chalcogen. The replacement of the various binding atoms by their analogues in the next row of the periodic table enhances the fluoride binding energy by 22–56%. The strongest fluoride binding agents utilize the tetrel bonds of the Sn atom, whereas it is I-halogen bonds that are preferred for Cl− and Br−. After incorporation of thermal and entropic effects, the halogen, chalcogen, and pnicogen bonding receptors do not represent much of an improvement over H-bonds with regard to this selectivity for F−, even I which binds quite strongly. In stark contrast, the tetrel-bonding derivatives, both Ge and Sn, show by far the greatest selectivity for F− over the other halides, as much as 1013, an enhancement of six orders of magnitude when compared to the H-bonding receptor.

Journal ArticleDOI
TL;DR: Two different levels of approximation to the methodological solution of the optomechanical Hamiltonian of a generic SERS configuration are described, and a phenomenological semi-classical approach based on a rate equation of the phonon population is demonstrated to be formally equivalent to that obtained from the full quantum optomechical approach.
Abstract: The surface-enhanced Raman scattering (SERS) of molecular species in plasmonic cavities can be described as an optomechanical process where plasmons constitute an optical cavity of reduced effective mode volume which effectively couples to the vibrations of the molecules. An optomechanical Hamiltonian can address the full quantum dynamics of the system, including the phonon population build-up, the vibrational pumping regime, and the Stokes–anti-Stokes correlations of the photons emitted. Here we describe in detail two different levels of approximation to the methodological solution of the optomechanical Hamiltonian of a generic SERS configuration, and compare the results of each model in light of recent experiments. Furthermore, a phenomenological semi-classical approach based on a rate equation of the phonon population is demonstrated to be formally equivalent to that obtained from the full quantum optomechanical approach. The evolution of the Raman signal with laser intensity (thermal, vibrational pumping and instability regimes) is accurately addressed when this phenomenological semi-classical approach is properly extended to account for the anti-Stokes process. The formal equivalence between semi-classical and molecular optomechanics descriptions allows us to describe the vibrational pumping regime of SERS through the classical cross sections which characterize a nanosystem, thus setting a roadmap to describing molecular optomechanical effects in a variety of experimental situations.

Journal ArticleDOI
TL;DR: The results indicate that efforts to reduce methane emissions via policies spanning a wide range of technical, regulatory and behavioural options provide benefits at little or negative net cost.
Abstract: Methane emissions contribute to global warming, damage public health and reduce the yield of agricultural and forest ecosystems. Quantifying these damages to the planetary commons by calculating the social cost of methane (SCM) facilitates more comprehensive cost-benefit analyses of methane emissions control measures and is the first step to potentially incorporating them into the marketplace. Use of a broad measure of social welfare is also an attractive alternative or supplement to emission metrics focused on a temperature target in a given year as it incentivizes action to provide benefits over a broader range of impacts and timescales. Calculating the SCM using consistent temporal treatment of physical and economic processes and incorporating climate- and air quality-related impacts, we find large SCM values, e.g. ∼$2400 per ton and ∼$3600 per ton with 5% and 3% discount rates respectively. These values are ∼100 and 50 times greater than corresponding social costs for carbon dioxide. Our results suggest that ∼110 of 140 Mt of identified methane abatement via scaling up existing technology and policy options provide societal benefits that outweigh implementation costs. Within the energy sector, renewables compare far better against use of natural gas in electricity generation when incorporating these social costs for methane. In the agricultural sector, changes in livestock management practices, promoting healthy diets including reduced beef and dairy consumption, and reductions in food waste have been promoted as ways to mitigate emissions, and these are shown here to indeed have the potential to provide large societal benefits (∼$50–150 billion per year). Examining recent trends in methane and carbon dioxide, we find that increases in methane emissions may have offset much of the societal benefits from a slowdown in the growth rate of carbon dioxide emissions. The results indicate that efforts to reduce methane emissions via policies spanning a wide range of technical, regulatory and behavioural options provide benefits at little or negative net cost. Recognition of the full SCM, which has typically been undervalued, may help catalyze actions to reduce emissions and thereby provide a broad set of societal benefits.

Journal ArticleDOI
TL;DR: It is shown that in addition to the structure of the building blocks, the halogen type has a direct influence on the morphology of surface-confined polymeric structures based on Ullmann coupling.
Abstract: Ullmann coupling is the most common approach to form surface-confined one- and two-dimensional conjugated structures from haloaryl derivatives. The dimensions of the formed nanostructures can be controlled by the number and location of halogens within the molecular precursors. Our study illustrates that the type of halogen plays an essential role in the design, orientation, and extent of the surface-confined organometallic and polymeric nanostructures. We performed a comparative analysis of five 1,4-dihalobenzene molecules containing chlorine, bromine, and iodine on Cu(110) using scanning tunneling microscopy, fast-X-ray photoelectron and near edge X-ray absorption fine structure spectroscopies. Our experimental data identify different molecular structures, reaction temperatures and kinetics depending on the halogen type. Climbing image nudged elastic band simulations further clarify these observations by providing distinct diffusion paths for each halogen species. We show that in addition to the structure of the building blocks, the halogen type has a direct influence on the morphology of surface-confined polymeric structures based on Ullmann coupling.

Journal ArticleDOI
TL;DR: These findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets, and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H2O2 and Fe2+.
Abstract: Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02–0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H2O2 with Fe2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H2O2 and Fe2+. In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.

Journal ArticleDOI
TL;DR: A reaction mechanism for furfural reduction has been proposed and the surface properties and pore structure of the heteroatom doped carbon support might determine the interactions between the Pt nanoparticles, carbon support and catalytic reactants in water, which in turn could have led to a good selectivity control.
Abstract: The search for and exploitation of efficient catalytic systems for selective conversion of furfural into various high value-added chemicals remains a huge challenge for green synthesis in the chemical industry. Here, novel Pt nanoparticles supported on bamboo shoot-derived porous heteroatom doped carbon materials were designed as highly active catalysts for controlled hydrogenation of furfural in aqueous media. The porous heteroatom doped carbon supported Pt catalysts were endowed with a large surface area with a hierarchical porous structure, a high content of nitrogen and oxygen functionalities, a high dispersion of the Pt nanoparticles, good water dispersibility and reaction stability. Benefiting from these features, the novel Pt catalysts displayed a high activity and controlled tunable selectivity for furfural hydrogenation to produce furfuryl alcohol and cyclopentanone in water. The product selectivity could be easily modulated by controlling the carbonization temperature of the porous heteroatom doped carbon support and the reaction conditions (temperature and H2 pressure). Under mild conditions (100 °C, 1 MPa H2), furfuryl alcohol was obtained in water with complete conversion of the furfural and an impressive furfuryl alcohol selectivity of >99% in the presence of Pt/NC-BS-500. A higher reaction temperature, in water, favored rearrangement of the furfural (FFA) with Pt/NC-BS-800 as the catalyst, which resulted in a high cyclopentanone yield of >76% at 150 °C and 3 MPa H2. The surface properties and pore structure of the heteroatom doped carbon support, adjusted using the carbonization temperature, might determine the interactions between the Pt nanoparticles, carbon support and catalytic reactants in water, which in turn could have led to a good selectivity control. The effect of different reaction temperatures and reaction times on the product selectivity was also explored. Combined with exploration of the distribution of the reaction products, a reaction mechanism for furfural reduction has been proposed.

Journal ArticleDOI
TL;DR: The results showed that hydrolysis of native cellulose fibres by HCl vapour is indeed a viable method for producing CNCs but it has more potential as a pre-treatment step rather than a full-fledged process on its own.
Abstract: Cellulose nanocrystals (CNCs) are topical in materials science but their full potential is yet to be fulfilled because of bottlenecks in the production: the process consumes huge amounts of water, recycling the strong acid catalyst is difficult, and purification steps are cumbersome, particularly with lengthy dialysis. Production of CNCs with HCl vapour overcomes many of these difficulties but the dispersion of CNCs from the already hydrolysed fibre matrix is a formidable challenge. This study is a fundamental effort to explore very basic means to facilitate CNC dispersion from cotton linter fibres (filter paper), hydrolysed to levelling off degree of polymerization by HCl vapour. The introduction of carboxylic groups on the cellulose crystal surface proved the most efficient method to alleviate dispersion with good yields (ca. 50%) and a provisional possibility to tune the CNC length. By contrast, attempts to directly disperse untreated hydrolysed fibres in various organic solvents and aqueous surfactant solutions were unsuccessful. The results showed that hydrolysis of native cellulose fibres by HCl vapour is indeed a viable method for producing CNCs but it has more potential as a pre-treatment step rather than a full-fledged process on its own.