scispace - formally typeset
Search or ask a question

Showing papers in "Human Gene Therapy in 2006"


Journal ArticleDOI
TL;DR: Evidence is provided that adenoviral vector-mediated ocular gene transfer is a viable approach for the treatment of ocular disorders and that further studies investigating the efficacy of AdPEDF.11 in patients with neovascular AMD should be performed.
Abstract: Twenty-eight patients with advanced neovascular age-related macular degeneration (AMD) were given a single intravitreous injection of an E1-, partial E3-, E4-deleted adenoviral vector expressing human pigment epithelium- derived factor (AdPEDF.11). Doses ranging from 10(6) to 10(9.5) particle units (PU) were investigated. There were no serious adverse events related to AdPEDF.11 and no dose-limiting toxicities. Signs of mild, transient intraocular inflammation occurred in 25% of patients, but there was no severe inflammation. Six patients experienced increased intraocular pressure that was easily controlled by topical medication. All adenoviral cultures were negative. At 3 and 6 months after injection, 55 and 50%, respectively, of patients treated with 10(6)-10(7.5) PU and 94 and 71% of patients treated with 10(8)-10(9.5) PU had no change or improvement in lesion size from baseline. The median increase in lesion size at 6 and 12 months was 0.5 and 1.0 disk areas in the low-dose group compared with 0 and 0 disk areas in the high-dose group. These data suggest the possibility of antiangiogenic activity that may last for several months after a single intravitreous injection of doses greater than 10(8) PU of AdPEDF.11. This study provides evidence that adenoviral vector-mediated ocular gene transfer is a viable approach for the treatment of ocular disorders and that further studies investigating the efficacy of AdPEDF.11 in patients with neovascular AMD should be performed.

335 citations


Journal ArticleDOI
TL;DR: Reports addressing what extent the outcome of insertional mutagenesis induced by gene vectors is related to the architecture and type of vector used, intrinsic properties of the target cell, and extrinsic and potentially disease-specific factors influencing clonal competition in vivo are discussed.
Abstract: Increasing evidence reveals that random insertion of gene transfer vectors into the genome of repopulating hematopoietic cells may alter their fate in vivo. Although most insertional mutations are expected to have few if any consequences for cellular survival, clonal dominance caused by retroviral vector insertions in (or in the vicinity of) proto-oncogenes or other signaling genes has been described for both normal and malignant hematopoiesis. Important insights into these side effects were initially obtained in murine models. Results from ongoing clinical studies have revealed that similar adverse events may also occur in human gene therapy. However, it remains unknown to what extent the outcome of insertional mutagenesis induced by gene vectors is related to (1) the architecture and type of vector used, (2) intrinsic properties of the target cell, and (3) extrinsic and potentially disease-specific factors influencing clonal competition in vivo. This review discusses reports addressing these questions, underlining the need for models that demonstrate and quantify the functional consequences of insertional mutagenesis. Improving vector design appears to be the most straightforward approach to increase safety, provided all relevant cofactors are considered.

330 citations


Journal ArticleDOI
TL;DR: It is concluded that this small, randomized gene therapy study failed to meet the primary objective of significant amputation reduction, however, significant and meaningful improvement was found in patients treated with a VEGF165-containing plasmid.
Abstract: Despite advances in revascularization techniques, limb salvage and relief of pain cannot be achieved in many diabetic patients with diffuse peripheral vascular disease. Our objective was to determine the effect of intramuscular administration of phVEGF165 (vascular endothelial growth factor gene-carrying plasmid) on critical limb ischemia (CLI) compared with placebo (0.9% NaCl). A double-blind, placebo-controlled study was performed in 54 adult diabetic patients with CLI. The primary end point was the amputation rate at 100 days. Secondary end points were a 15% increase in pressure indices (ankle-to-brachial index and toe-to-brachial index), clinical improvement (skin, pain, and Quality of Life score), and safety. In patients (n=27) treated with placebo versus phVEGF165-treated patients (n=27) the following results were found: 6 amputations versus 3 (p=not significant [NS]); hemodynamic improvement in 1 versus 7 (p=0.05); improvement in skin ulcers, 0 versus 7 (p=0.01); decrease in pain, 2 versus 5 (p=NS); and overall, 3 versus 14 responding patients (p=0.003). No grade 3 or 4 adverse effects were seen in these patients. We conclude that this small, randomized gene therapy study failed to meet the primary objective of significant amputation reduction. However, significant and meaningful improvement was found in patients treated with a VEGF165-containing plasmid. There were no substantial adverse events.

289 citations


Journal ArticleDOI
TL;DR: The PEI complexation of siRNAs is presented as a universally applicable platform for RNAi in vitro and in vivo and the potential of PEI/siRNA-mediated PTN gene targeting is established as a novel therapeutic option in GBM.
Abstract: RNA interference (RNAi) is a powerful strategy to inhibit gene expression through specific mRNA degradation mediated by small interfering RNAs (siRNAs). In vivo, however, the application of siRNAs is severely limited by their instability and poor delivery into target cells and target tissues. Glioblastomas are the most frequent and malignant brain tumors with, so far, limited treatment options. To develop novel and more efficacious therapies, advanced targeting strategies against glioblastoma multiforme (GBM)-relevant target genes must be established in vivo. Here we use RNAi-based targeting of the secreted growth factor pleiotrophin (PTN), employing a polyethylenimine (PEI)/siRNA complex strategy. We show that the complexation of chemically unmodified siRNAs with PEI leads to the formation of complexes that condense and completely cover siRNAs as determined by atomic force microscopy (AFM). On the efficient cellular delivery of these PEI/siRNA complexes, the PTN downregulation in U87 glioblastoma cells in vitro results in decreased proliferation and soft agar colony formation. More importantly, in vivo treatment of nude mice through systemic application (subcutaneous or intraperitoneal) of PEI-complexed PTN siRNAs leads to the delivery of intact siRNAs into subcutaneous tumor xenografts and a significant inhibition of tumor growth without a measurable induction of siRNA-mediated immunostimulation. Likewise, in a clinically more relevant orthotopic mouse glioblastoma model with U87 cells growing intracranially, the injection of PEI-complexed PTN siRNAs into the CNS exerts antitumoral effects. In conclusion, we present the PEI complexation of siRNAs as a universally applicable platform for RNAi in vitro and in vivo and establish, also in a complex and relevant orthotopic tumor model, the potential of PEI/siRNA-mediated PTN gene targeting as a novel therapeutic option in GBM.

268 citations


Journal ArticleDOI
TL;DR: The results indicate that AAV type 2, 5 or 6 exposure is low in CF and control populations and even lower in CF children, as measured in serum from children and adults with CF and from normal adults.
Abstract: Adeno-associated virus (AAV) vectors are promising candidates for gene therapy directed to the lungs, in particular for treatment of cystic fibrosis (CF). In animal models of lung gene transfer, neutralizing antibodies in serum made in response to vector exposure have been associated with a partial to complete block to repeat transduction by vectors with the same capsid type, thus transduction by AAV vectors might be inefficient in humans previously exposed to the same AAV type. AAV type 2 (AAV2) has been used in clinical trials of lung gene transfer, but AAV5 and AAV6 have been shown to mediate more efficient transduction in rodent lungs and in cultured human airway epithelia compared with that of AAV2. Here we have measured neutralizing antibodies against AAV type 2, 5, and 6 vectors in serum from children and adults with CF, and from normal adults. About 30% of adults were seropositive for AAV2, 20-30% were seropositive for AAV6, and 10-20% were seropositive for AAV5. CF children were seropositive for AAV type 2, 5, or 6 at rates of 4-15%. All individuals seropositive for AAV6 were also seropositive for AAV2, and the AAV6 titer was low compared with the AAV2 titer. AAV5-positive sera were lower both in titers and rates than those seen for AAV6. The results indicate that AAV type 2, 5 or 6 exposure is low in CF and control populations and even lower in CF children.

261 citations


Journal ArticleDOI
TL;DR: This minireview is limited in scope to the most recent studies using in vivo EP for delivery of plasmid DNA, and focuses on those studies that demonstrated a clear therapeutic response with the potential to be used clinically.
Abstract: PLASMID DNA-BASED GENE TRANSFER is attractive because it eliminates the need for a biological vector, although it has been handicapped by the lack of efficient and/or effective delivery methods. When compared with viral delivery, the advantages include reduced potential for immunogenicity, integration into the genome, and environmental spread. One method that has emerged as a means to facilitate delivery of plasmid DNA is in vivo electroporation or electropermeabilization. Gene therapy-specific descriptions include gene electroinjection, gene electrotransfer, electrically mediated delivery, or electrogene transfer. For the purpose of this minireview, all these terms are referred to as in vivo EP. In vivo EP has also been used to facilitate transdermal delivery, the use of electric pulses to transport molecules through the skin, but this area of research will not be discussed. Electroporation originated for in vitro transfection (Neumann et al., 1982) and over the past 25 years has become a standard laboratory method. The administration of electric fields under specific pulse conditions increases cell membrane permeability, which allows uptake of molecules through the cell membrane. The initial demonstration of in vivo EP was the delivery of chemotherapeutic agents to solid tumors (Okino et al., 1987). In the midto late 1990s, the effectiveness of this approach for drug delivery was demonstrated in a variety of different tumors in animals and humans (Gothelf et al., 2003). This technique was then tested for enhanced plasmid DNA delivery (Heller et al., 1996; Nishi et al., 1996). In vivo EP is applicable to all tissues tested, the primary issue being accessibility. The use of in vivo EP for plasmid DNA delivery has seen tremendous growth, including the initiation of the first clinical trials. Gene expression level and kinetic patterns after in vivo EP delivery can be varied for different applications by manipulation of the electrode configuration, electrical parameters, and tissue of delivery (Table 1). The versatility of expression is a distinct advantage, and these variables should be carefully selected to match the specific gene transfer application. Therapeutic in vivo EP delivery focuses on a variety of applications such as cancer therapy, regulation of protein levels to enhance or reduce function, or the amelioration of symptoms of iatrogenic or natural disease. Vaccine and preventive gene expression has also been demonstrated. Like other gene delivery methods, enhancement of transgene expression by in vivo EP may also be developed for possible economic rather than therapeutic benefit. Examples include the production of monoclonal antibodies (Perez et al., 2004; Tjelle et al., 2004) or the generation of healthier livestock (Prud’homme et al., 2006). Plasmids or oligonucleotides may also be delivered to explore promoter or gene function. Expression of reporter genes may be used to optimize in vivo EP parameters, to explore the mechanism of EP, or simply to demonstrate delivery in a new tissue. The increased use of in vivo EP for gene delivery has established its potential for many therapeutic applications. Numerous published studies and reviews (Heller, 2003; Andre and Mir, 2004; Heller et al., 2005) describe in vivo EP delivery of plasmid DNA. This minireview is limited in scope to the most recent studies using in vivo EP for delivery of plasmid DNA. The focus is on those studies that demonstrated a clear therapeutic response with the potential to be used clinically.

223 citations


Journal ArticleDOI
TL;DR: A phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 (rAAV2) alpha1-antitrypsin (AAT) vector was performed in 12 AAT-deficient adults, 10 of whom were male.
Abstract: A phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 (rAAV2) α 1- antitrypsin (AAT) vector was performed in 12 AAT-deficient adults, 10 of whom were male. All subjects were either homozygous for the most common AAT mutation (a missense mutation designated PI*Z) or compound heterozygous for PI*Z and another mutation known to cause disease. There were four dose cohorts, ranging from 2.1 × 1012 vector genomes (VG) to 6.9 × 1013 VG, with three subjects per cohort. Subjects were injected sequentially in a dose-escalating fashion with a minimum of 14 days between patients. Subjects who had been receiving AAT protein replacement discontinued that therapy 28 days before vector administration. There were no vector-related serious adverse events in any of the 12 participants. Vector DNA sequences were detected in the blood between 1 and 3 days after injection in nearly all patients receiving doses of 6.9 × 1012 VG or higher. Anti-AAV2 capsid antibodies were present and rose ...

192 citations


Journal ArticleDOI
TL;DR: The efficacy and lack of toxicity of intravenously administered encapsulated anti-RhoA siRNA in chitosan-coated polyisohexylcyanoacrylate (PIHCA) nanoparticles in xenografted aggressive breast cancers (MDA-MB-231) is reported.
Abstract: Overexpression of RhoA in cancer indicates a poor prognosis, because of increased tumor cell proliferation and invasion and tumor angiogenesis. We showed previously that anti-RhoA small interfering RNA (siRNA) inhibited aggressive breast cancer more effectively than conventional blockers of Rho-mediated signaling pathways. This study reports the efficacy and lack of toxicity of intravenously administered encapsulated anti-RhoA siRNA in chitosan-coated polyisohexylcyanoacrylate (PIHCA) nanoparticles in xenografted aggressive breast cancers (MDA-MB-231). The siRNA was administered every 3 days at a dose of 150 or 1500 µg/kg body weight in nude mice. This treatment inhibited the growth of tumors by 90% in the 150-µg group and by even more in the 1500-µg group. Necrotic areas were observed in tumors from animals treated with anti-RhoA siRNA at 1500 µg/kg, resulting from angiogenesis inhibition. In addition, this therapy was found to be devoid of toxic effects, as evidenced by similarities between control and ...

173 citations


Journal ArticleDOI
TL;DR: It is concluded that NV1020, a genetically engineered but replication-competent HSV-1 oncolytic virus, can be safely administered into the hepatic artery without significant effects on normal liver function.
Abstract: Current regimens of systemic chemotherapy result in only modest lengthening of survival in patients with advanced stage, liver-dominant, metastatic colorectal cancer who have failed first-line chemotherapy. The objective of this study was to investigate the safety and tolerability of NV1020, a replication-competent, attenuated, genetically engineered herpes simplex virus type 1 (HSV-1), in patients with hepatic colorectal metastases refractory to first-line chemotherapy. A phase I, open-label, dose-escalating study of a single 10-min hepatic arterial infusion of NV1020 in four cohorts. Three patients in each cohort received doses of 3 x 10(6), 1 x 10(7), 3 x 10(7), and 1 x 10(8) plaque-forming units. Adverse events were either mild or moderate in severity, and self-limiting. Only three serious adverse events (one transient rise in serum y-glutamyltransferase, one diarrhea, and one leukocytosis) experienced by three patients were considered to be possibly or probably related to NV1020. There were no deaths during the study, and there was no evidence of disseminated herpes infection. Viral presence was detected in only one saliva sample and two serum samples from one asymptomatic patient in the highest dose cohort. In the first week after viral administration only rare and minor increases were noted for tumor necrosis factor-alpha (six samples; three patients; peak, 40 pg/ml), interleukin (IL)-1 (two samples; two patients; peak, 28 pg/ml), and interferon-y (four samples; two subjects; peak, 54 pg/ml). No IL-2 was detected. Mild liver enzyme elevations were self-limiting and not associated with clinical symptoms. We conclude that NV1020, a genetically engineered but replication-competent HSV-1 oncolytic virus, can be safely administered into the hepatic artery without significant effects on normal liver function.

172 citations


Journal ArticleDOI
TL;DR: The results allow for consideration of an upper range for no observed adverse effect level in future human trials of subretinal AAV-2/2.RPE65 and the potential value of foveal treatment for LCA and other retinal degenerations warrants further research into how to achieve gene transfer without retinal injury from surgical detachment of the retina.
Abstract: Leber congenital amaurosis (LCA) is a molecularly heterogeneous disease group that leads to blindness. LCA caused by RPE65 mutations has been studied in animal models and vision has been restored by subretinal delivery of AAV-RPE65 vector. Human ocular gene transfer trials are being considered. Our safety studies of subretinal AAV-2/2.RPE65 in RPE65-mutant dogs showed evidence of modest photoreceptor loss in the injection region in some animals at higher vector doses. We now test the hypothesis that there can be vectorrelated toxicity to the normal monkey, with its human-like retina. Good Laboratory Practice safety studies following single intraocular injections of AAV-2/2.RPE65 in normal cynomolgus monkeys were performed for 1-week and 3-month durations. Systemic toxicity was not identified. Ocular-specific studies included clinical examinations, electroretinography, and retinal histopathology. Signs of ocular inflammation postinjection had almost disappeared by 1 week. At 3 months, electroretinography in vector-injected eyes was no different than in vehicle-injected control eyes or compared with presurgical recordings. Healed sites of retinal perforation from subretinal injections were noted clinically and by histopathology. Foveal architecture in subretinally injected eyes, vector or vehicle, could be abnormal. Morphometry of central retina showed no photoreceptor layer thickness abnormalities occurring in a dose-dependent manner. Vector sequences were present in the injected retina, vitreous, and optic nerve at 1 week but not consistently in the brain. At 3 months, there were no vector sequences in optic nerve and brain. The results allow for consideration of an upper range for no observed adverse effect level in future human trials of subretinal AAV-2/2.RPE65. The potential value of foveal treatment for LCA and other retinal degenerations warrants further research into how to achieve gene transfer without retinal injury from surgical detachment of the retina.

144 citations


Journal ArticleDOI
TL;DR: An efficient vectorfree method of mRNA production from polymerase chain reaction-generated DNA templates is reported that can be applied to generate autologous T lymphocytes directed toward malignant cells and conferred powerful cytotoxicity to T cells against CD19+ targets from the same donor.
Abstract: Transfection of human cells with DNA in biomedical applications carries the risk of insertional mutagenesis. Transfection with mRNA avoids this problem; however, in vitro production of mRNA, based on preliminary DNA template cloning in special vectors, is a laborious and time-consuming procedure. We report an efficient vectorfree method of mRNA production from polymerase chain reaction-generated DNA templates. For all cell types tested mRNA was transfected more readily than DNA, and its expression was highly uniform in cell populations. Even cell types relatively resistant to transfection with DNA could express transfected mRNA well. The level of mRNA expression could be controlled over a wide range by changing the amount of input RNA. Cells could be efficiently and simultaneously loaded with several different transcripts. To test a potential clinical application of this method, we transfected human T lymphocytes with mRNA encoding a chimeric immune receptor directed against CD19, a surface antigen widely...

Journal ArticleDOI
TL;DR: Some of the more recent efforts aimed at increasing the immunogenicity of DNA vaccines, including the use of genetic adjuvants and plasmid-based expression of viral replicons are described.
Abstract: The field of DNA vaccines continues to advance and several new strategies to augment the immunogenicity of DNA vaccines are under evaluation. The majority of these studies are in the early preclinical stage, but some DNA vaccines have moved into clinical trials. In this review, we describe some of the more recent efforts aimed at increasing the immunogenicity of DNA vaccines, including the use of genetic adjuvants and plasmid-based expression of viral replicons. In addition, we discuss the possibility of using DNA vaccines to address emerging infectious agents where they may provide an advantage over other vaccine strategies and we review some areas where DNA vaccines have been used to target self-antigens.

Journal ArticleDOI
TL;DR: It is indicated that AAV2 and AAV6 capsid proteins can elicit primary cellular immune responses when injected into the skeletal muscle of random-bred dogs, and the possibility of cellular immunity to AAV vectors in humans is suggested.
Abstract: Recombinant adeno-associated virus (rAAV)-mediated gene transfer has shown promise for treating diseases in various animal models including the mdx mouse model of Duchenne muscular dystrophy (DMD). In many cases, however, preclinical studies in inbred mice have not successfully predicted human clinical responses. To assess the potential clinical utility of treating human DMD patients by AAV-mediated gene delivery, we performed a series of direct intramuscular injections in random-bred wild-type dogs. AAV serotypes 2 and 6 carrying different promoter-transgene cassettes were produced as previously described for murine studies and administered intramuscularly. The injection sites were biopsied at various time points and analyzed for transgene expression and immunohistochemical analysis. In contrast to the generally nonimmunogenic nature of these vectors in murine studies, both AAV2 and AAV6 vectors elicited robust cellular immune responses regardless of the transgene expressed, the cellular specificity of the promoter, and the muscle type injected. Viral purification by various methods did not diminish T cell-mediated infiltration. Our data indicate that AAV2 and AAV6 capsid proteins can elicit primary cellular immune responses when injected into the skeletal muscle of random-bred dogs, and suggest the possibility of cellular immunity to AAV vectors in humans.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the distribution of AAV2-thymidine kinase (AAV2-TK) and AAV-aromatic L-amino acid decarboxylase (AADC) in monkey brain after convection-enhanced delivery (CED).
Abstract: Adeno-associated virus type 2 (AAV2)-based vectors are promising transgene carriers for experimental gene therapy treatments of brain diseases. However, detailed evaluation of transgene distribution, trafficking, and transport within the brain is of the utmost importance before applying any type of gene therapy in humans. We examined the distribution of AAV2-thymidine kinase (AAV2-TK) and AAV2-aromatic L-amino acid decarboxylase (AAV2-AADC) in monkey brain after convection-enhanced delivery (CED). The AADC group consisted of two 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys that received unilateral infusions of AAV2-AADC into six sites in the right hemisphere. The TK group consisted of three monkeys that received bilateral CED infusion of AAV2-TK into the putamen; one side in all three monkeys was coinfused with heparin. Six weeks after AAV delivery, the brains were collected and processed for immunohistochemical staining. Volumetric measurement of TK distribution showed that at lea...

Journal ArticleDOI
TL;DR: Results indicate that delayed systemic administration of the kallikrein gene after onset of stroke protects against ischemic brain injury by inhibiting apoptosis and inflammation and by promoting angiogenesis and neurogenesis.
Abstract: Stroke-induced neurological deficits and mortality are often associated with timing of treatment after the onset of stroke. We showed that local delivery of the human tissue kallikrein gene into rat brain immediately after middle cerebral artery occlusion (MCAO) exerts neuroprotection. In this study, we investigated the effect of systemic delivery of the kallikrein gene 8 hr after MCAO. Expression of recombinant human tissue kallikrein after gene transfer was identified in the ischemic brain region and blood vessels. Intravenous injection of adenovirus encoding the kallikrein gene significantly reduced neurological deficit scores 2 and 7 days after gene transfer. Kallikrein gene transfer also reduced ischemia–reperfusion (I/R)-induced cerebral infarction and promoted the survival and migration of glial cells from penumbra to the ischemic core from 3 to 14 days after gene delivery. Kallikrein reduced I/R-induced apoptosis of neuronal cells and inhibited inflammatory cell accumulation in the ischemic brain....

Journal ArticleDOI
TL;DR: The promising primary safety outcomes of the study and preliminary indications of effectiveness provide evidence that hMaxi-K gene transfer is a viable approach to the treatment of ED and that further studies investigating the efficacy of hMaxu-K in patients with ED should be performed.
Abstract: Eleven patients with moderate to severe erectile dysfunction (ED) were given a single-dose corpus cavernosum injection of hMaxi-K, a "naked" DNA plasmid carrying the human cDNA encoding hSlo (for human slowpoke), the gene for the α, or pore-forming, subunit of the human smooth muscle Maxi-K channel. Three patients each were given 500, 1000, and 5000 µg, and two patients were given 7500 µg, of hMaxi-K and monitored for 24 weeks. The primary objectives of this phase I study were safety and tolerability of escalating hMaxi-K doses as assessed by clinical evaluations and laboratory tests. Secondary efficacy objectives were measured primarily by use of the International Index of Erectile Function (IIEF) scale. Patient responses were validated by partner responses. There were no serious adverse events and no dose-related adverse events attributed to gene transfer for any patient at any dose or study visit. No clinically significant changes from baseline were seen in physical evaluations (general and genitourina...

Journal ArticleDOI
TL;DR: Although hemophilia A mice were not predictive of vector efficacy in dogs, the two treated male dogs became symptom-free for long periods, showing translation of these robust vectors either in appropriate large animals or human beings remains challenging.
Abstract: We reported total correction of blood coagulation plasma factor VIII (FVIII) activity, using adeno-associated virus serotype 8 (AAV8) vectors for liver-specific gene transfer in hemophilia A mice. We now show, irrespective of immunosuppression or route of administration, total long-term correction of hemophilia A mice with pseudotyped AAV8 and AAV9 vectors. We delivered two FVIII vectors, one expressing canine heavy chain and the other expressing canine light chain. Interestingly, when these vectors were given by hepatic portal vein to hemophilia A dogs, only modest FVIII levels were seen despite the species-specific transgene. No dogs treated developed FVIII inhibitors. However, of three dogs treated with AAV8 vector, the single male, given 1.25 x 10(13) genome copies per vector per kilogram (GC/vector/kg), maintained a level of >4.5% for more than 2 years. In contrast, the two female dogs expressed only 2% FVIII activity despite receiving higher doses of 1.52 x 10(13) and 3 x 10(13) GC/vector/kg, respectively. On the other hand, a male dog treated with AAV9 vector at a low dose (6 x 10(12) GC/vector/kg) maintained FVIII levels of 2-2.5% of normal without bleeding for 200 days (observation ongoing). Although hemophilia A mice were not predictive of vector efficacy in dogs, the two treated male dogs became symptom-free for long periods. Even so, translation of these robust vectors either in appropriate large animals or human beings remains challenging.

Journal ArticleDOI
TL;DR: This paper reviews the major metabolic and physical impediments that plasmid DNA vectorized by synthetic vectors encounters between the cytosol and the nucleus and reviews some of the current methods of gene transfer mediated by synthetic vector, highlighting systems that exploit the actual knowledge of the nucleocytoplasmic transport of plasmids.
Abstract: Nonviral vectors represent a promising approach for the safe delivery of therapeutic DNA in genetic and acquired human diseases. Before synthetic vector systems can be used for clinical applications, their limited efficacy must be addressed. At the cellular level, successful gene transfer is dependent on several additional factors including DNA uptake, release from the DNA-vector complex, and nucleocytoplasmic transport. This paper reviews the major metabolic and physical impediments that plasmid DNA vectorized by synthetic vectors encounters between the cytosol and the nucleus. Plasmid DNA that escapes the endolysosomal compartment encounters the diffusional and metabolic barriers of the cytoplasm, reducing the number of intact plasmids that reach the nuclear envelope. Nuclear translocation of DNA requires either the disassembly of the nuclear envelope during cell division or active nuclear transport via the nuclear pore complex. In the nucleus, plasmid DNA is relatively stable, but its transcription and its fate during cell division are still debated. A better understanding of the cellular and molecular basis of nonviral gene transfer during nucleocytoplasmic trafficking may provide strategies to overcome those obstacles that limit the efficiency of nonviral gene delivery. We review some of the current methods of gene transfer mediated by synthetic vectors, highlighting systems that exploit our actual knowledge of the nucleocytoplasmic transport of plasmid DNA.

Journal ArticleDOI
TL;DR: It is demonstrated that each tissue retains various amounts of adenoviral vector, depending on the route of administration, which is useful in the strategic design and implementation ofAdenovirus-mediated gene therapies.
Abstract: A better understanding of the in vivo biodistribution of adenoviral vectors would enable the researcher to anticipate potential side effects due to off-targeted site of transduction, and aid in the strategic design of gene therapy. We combined real-time polymerase chain reaction with in vivo optical imaging to examine viral transduction in liver, lung, spleen, kidney, prostate, and lymph nodes. A replication-deficient serotype 5 adenoviral vector expressing the firefly luciferase gene under the control of a constitutive cytomegalovirus promoter was administered in vivo via different routes. Intravenous and intraperitoneal injections resulted in greatest gene expression and viral DNA in the liver, whereas intraperitoneal injections led to a greater extent of gene delivery to the prostate. Although prostate-directed injection resulted in dominant gene expression in the targeted site, leakage of the vector to other organs was also observed. Vector injection into the lymphatic-rich paw tissue or the subcutaneous tissue of shoulder or chest followed the expected lymphatic drainage pattern, resulting in the accumulation of viral vector in ipsilateral brachial and axillary lymph nodes. Collectively, this study demonstrates that each tissue retains various amounts of adenoviral vector, depending on the route of administration. This knowledge is useful in the strategic design and implementation of adenovirus-mediated gene therapies.

Journal ArticleDOI
TL;DR: Whether cryptic phiC31 recognition sites in the host genome may result in chromosomal rearrangements is investigated and it is speculated that cryptic phoC31 attachment sites flanking the transgene and cryptic phuC31 attachments sites inThe host genome recombine with each other.
Abstract: Reports on insertional mutagenesis due to integration of gene therapy vectors into the host genome have raised concerns about the genetic manipulation of somatic cells. Previously, it was demonstrated that integrase phiC31 derived from a Streptomyces phage mediates site-specific integration into the host genome of mammalian cells in vitro and in vivo by recombining the attB recognition site in an episomal plasmid and one or more pseudoattP sites in the host chromosomes. In the present study we investigated whether cryptic phiC31 recognition sites in the host genome may result in chromosomal rearrangements. Of 69 independent integration events analyzed in human cells, 6 (8.7%) integrated into human chromosome 19 (19q13.31) and 10 (14.49%) integrated into human chromosome 12 (12q22). Most importantly, of all integration sites analyzed, 15% were found to contain an integrated transgene that was flanked by DNA sequences originating from two different chromosomes. To confirm chromosomal translocations we performed a polymerase chain reaction analysis of chromosomal DNA flanking the transgene and also performed limited studies to determine the genotype of single-cell clones. Although the mechanism responsible for chromosomal translocations needs to be further characterized, we speculate that cryptic phiC31 attachment sites flanking the transgene and cryptic phiC31 attachment sites in the host genome recombine with each other.

Journal ArticleDOI
TL;DR: Direct, local adenoviral delivery of an osteogenic gene thus led to enhanced healing of fractures in an ovine model of osteoporosis, and promising data encourage the further development of genetic approaches to enhance bone healing in patients suffering osteopOrosis-associated fractures.
Abstract: Osteoporosis, a major public health burden, is associated with increased fracture risk. Fracture healing in osteoporosis is delayed, with reduced callus formation and impaired biomechanical properties of newly formed bone leading to high risk of fixation failure. Adenoviral gene transfer of bone morphogenetic protein-2 (BMP-2) has been shown to enhance fracture healing. This study evaluated the ability of gene transfer to enhance bone healing in osteoporosis. An established sheep model of osteoporosis with well-characterized alterations in fracture healing was used. Osteotomies were created surgically in the tibias of adult female sheep and monitored for 8 weeks, using radiographic, biomechanical, and histological methods. For pilot experiments, primary ovine osteoblasts and mesenchymal stem cells were transduced with a recombinant adenovirus carrying BMP-2 cDNA (Ad.BMP-2). Large increases in alkaline phosphatase production and mineralization confirmed the ability of human BMP-2 to stimulate osteoblastic differentiation in sheep. In vivo bending stiffness measurements during fracture healing as well as ex vivo torsional stiffness measurements demonstrated stiffer callus tissue after treatment with Ad.BMP-2. The differences were found mainly in the early fracture-healing period. Computed tomography demonstrated that animals receiving the BMP-2 cDNA had larger cross-sectional callus area and higher callus density. Histological examination of the tibias confirmed enhanced callus formation. Direct, local adenoviral delivery of an osteogenic gene thus led to enhanced healing of fractures in an ovine model of osteoporosis. These promising data encourage the further development of genetic approaches to enhance bone healing in patients suffering osteoporosis-associated fractures.

Journal ArticleDOI
TL;DR: Results show that recombinant adenoviruses expressing TS and ASP-2 antigens of T. cruzi are interesting candidates for the development of a vaccine against Chagas' disease.
Abstract: Protection against protozoan parasite Trypanosoma cruzi has been shown to be dependent on the induction of type 1 immune responses. Replication-deficient human type 5 recombinant adenoviruses have an unsurpassed ability to induce type 1 immune responses. Thus, we constructed two type 5 recombinant adenoviruses encoding parasite antigens trans-sialidase (rAdTS) and amastigote surface protein-2 (rAdASP2). Both antigens were genetically engineered to secrete recombinant products in order to induce both optimal antibody and T cell responses. Immunizations of mice with rAdASP2 and rAdTS induced high levels of serum antibodies specific for their recombinant products. In addition, both recombinant viruses were able to elicit a biased helper T cell type 1 (Th1) cellular immune response and a substantial CD8+ T cell-mediated immune response. Moreover, individual immunization with rAdASP2 or rAdTS induced high levels of protection against a challenge with live parasites. CD8+ T cells mediated, at least in part, such protection. Furthermore, when combined in the same inoculum, rAdTS plus rAdASP2 induced complete protection in all animals tested, even when challenges were performed 14 weeks after the last immunization. Taking together, these results show that recombinant adenoviruses expressing TS and ASP-2 antigens of T. cruzi are interesting candidates for the development of a vaccine against Chagas' disease.

Journal ArticleDOI
TL;DR: Lentiviral vectors surpass retroviral vectors in efficient long-term in vivo marking of subventricular zone stem cells for basic research and therapeutic applications.
Abstract: Modulation of adult neurogenesis may offer new therapeutic strategies for various brain disorders. In the adult mammalian brain the subventricular zone (SVZ) of the lateral ventricle is a region of continuous neurogenesis. Lentiviral vectors stably integrate into dividing and nondividing cells, in contrast to retroviral vectors, which integrate only into dividing cells. We compared their potential for gene transfer into both quiescent and slowly dividing stem cells as well as into more rapidly dividing progenitor cells. In contrast to retroviral vectors, stereotactic injection of lentiviral vectors into the SVZ of adult mice resulted in efficient and long-term marker gene expression in cells with characteristics of both immature type B cells and migrating precursor cells. After migration along the rostral migratory stream and differentiation, the number of enhanced green fluorescent protein (eGFP)-expressing granular and periglomerular interneurons increased over time in the ipsilateral olfactory bulb. Moreover, the number of eGFP-labeled neuronal progenitor cells in the SVZ increased over time. By intraventricular injection of lentiviral vectors we could restrict gene transfer to ependymal cells and type B astroglial-like stem cells. In conclusion, lentiviral vectors surpass retroviral vectors in efficient long-term in vivo marking of subventricular zone stem cells for basic research and therapeutic applications.

Journal ArticleDOI
TL;DR: The efficacy of WAS gene transfer into HSCs, using the WAS promoter-containing lentiviral vector, combined with nonlethal irradiation provides a strong rationale for the development of gene therapy for WAS patients.
Abstract: Wiskott-Aldrich syndrome (WAS) is a life-threatening X-linked primary immunodeficiency characterized by infections, hemorrhages, autoimmune disorders, and lymphomas. Transplantation of genetically corrected autologous hematopoietic stem cells (HSCs) could represent an alternative treatment to allogeneic HSC transplantation, the latter being often associated with severe complications. We used WAS –/– mice to test the efficacy of a gene therapy approach based on nonlethal irradiation followed by transplantation of WAS –/– HSCs transduced with lentiviral vectors encoding the WAS protein (WASP) from either the ubiquitous PGK promoter or the tissue- specific WAS promoter. The procedure resulted in significant levels of engraftment of WASP-expressing T cells, B cells, platelets, and myeloid cells. T cells harbored one or two vector copies and displayed partial to full correction of T cell receptor-driven interleukin-2 production and proliferation. In addition, polymerization of F-actin and localization of WASP ...

Journal ArticleDOI
TL;DR: AAT gene therapy was remarkably effective in preventing type 1 diabetes and T cell receptor spectratyping indicated that A AT gene therapy altered T cell repertoire diversity in splenocytes from NOD mice.
Abstract: An imbalance of the immune-regulatory pathways plays an important role in the development of type 1 diabetes. Therefore, immunoregulatory and antiinflammatory strategies hold great potential for the prevention of this autoimmune disease. Studies have demonstrated that two serine proteinase inhibitors, α 1-antitrypsin (AAT) and elafin, act as potent antiinflammatory agents. In the present study, we sought to develop an efficient gene therapy approach to prevent type 1 diabetes. Cohorts of 4-week-old female nonobese diabetic (NOD) mice were injected intramuscularly with rAAV1-CB-hAAT, rAAV1-CB-hElafin, or saline. AAV1 vector mediated sustained high levels of transgene expression, sufficient to overcome a humoral immune response against hAAT. AAT gene therapy, contrary to elafin and saline, was remarkably effective in preventing type 1 diabetes. T cell receptor spectratyping indicated that AAT gene therapy altered T cell repertoire diversity in splenocytes from NOD mice. Adoptive transfer experiments demonst...

Journal ArticleDOI
TL;DR: In this article, a single intramuscular administration of adeno-associated virus (AAV) serotype 1 vector, encoding the human LPL(S447X) variant, results in complete, long-term normalization of dyslipidemia in mice.
Abstract: Human lipoprotein lipase (hLPL) deficiency, for which there currently exists no adequate treatment, leads to excessive plasma triglycerides (TGs), recurrent abdominal pain, and life-threatening pancreatitis. We have shown that a single intramuscular administration of adeno-associated virus (AAV) serotype 1 vector, encoding the human LPL(S447X) variant, results in complete, long-term normalization of dyslipidemia in LPL(/) mice. As a prelude to gene therapy for human LPL deficiency, we tested the efficacy of AAV1-LPL(S447X) in LPL(/) cats, which demonstrate hypertriglyceridemia (plasma TGs, >10,000 mg/dl) and clinical symptoms similar to LPL deficiency in humans, including pancreatitis. Male LPL(/) cats were injected intramuscularly with saline or AAV1-LPL(S447X) (1 x 10(11)-1.7 x 10(12) genome copies [GC]/kg), combined with oral doses of cyclophosphamide (0-200 mg/m(2) per week) to inhibit an immune response against hLPL. Within 3-7 days after administration of >or=5 x 10(11) GC of AAV1-LPL(S447X) per kilogram, the visible plasma lipemia was completely resolved and plasma TG levels were reduced by >99% to normal levels (10-20 mg/dl); intermediate efficacy (95% reduction) was achieved with 1 x 10(11) GC/kg. Injection in two sites, greatly limiting the amount of transduced muscle, was sufficient to completely correct the dyslipidemia. By varying the dose per site, linear LPL expression was demonstrated over a wide range of local doses (4 x 10(10)-1 x 10(12) GC/site). However, efficacy was transient, because of an anti-hLPL immune response blunting LPL expression. The level and duration of efficacy were significantly improved with cyclophosphamide immunosuppression. We conclude that AAV1-mediated delivery of LPL(S447X) in muscle is an effective means to correct the hypertriglyceridemia associated with feline LPL deficiency.

Journal ArticleDOI
TL;DR: It is demonstrated in nonhuman primates that this approach resulted in significantly higher efficiency hepatic transduction with reduced systemic vector dissemination compared with systemic intravascular delivery and stable, high levels of transgene expression were obtained for at at least 665 days for one baboon and for at least 560 days for two baboons with no evidence of long-term toxicity.
Abstract: Helper-dependent adenoviral vectors (HDAds) are attractive vectors for liver-directed gene therapy because they can mediate sustained, high-level transgene expression without chronic toxicity. However, high vector doses are required to achieve efficient hepatic transduction by systemic delivery because of a nonlinear dose response. Unfortunately, such high doses result in systemic vector dissemination and dose-dependent acute toxicity with potentially severe and lethal consequences. We hypothesize that the threshold to efficient hepatic transduction may be circumvented by delivering the vector into the surgically isolated liver via the portal vein. Total hepatic isolation was achieved by occluding hepatic inflow from the portal vein and hepatic artery and by occluding hepatic venous outflow at the inferior vena cava. We demonstrate in nonhuman primates that this approach resulted in significantly higher efficiency hepatic transduction with reduced systemic vector dissemination compared with systemic intravascular delivery. This method of delivery was associated with transient acute toxicity, the severity of which was variable. Importantly, stable, high levels of transgene expression were obtained for at least 665 days for one baboon and for at least 560 days for two baboons with no evidence of long-term toxicity.

Journal ArticleDOI
TL;DR: A series of innovative "smart" formulations directs the current development toward safe and effective systemic tumor-targeted delivery of pDNA and siRNA.
Abstract: Increased understanding of the molecular pathological mechanisms of cancer, the advent of novel molecular tools such as synthetic small interfering RNA (siRNA) or plasmid DNA-based vectors (pDNA), and technology for the in vivo delivery of such biomolecular therapeutics have provided an encouraging perspective for cancer therapy. Numerous pDNAs and siRNAs have been tested in preclinical cancer models, and these first approaches have reached clinical evaluation. The therapeutic effector mechanisms include interference with neoangiogenesis, blockage of cell division, promotion of apoptosis and sensitization to chemotherapy, delivery of cytotoxic genes, and activation of anticancer immune responses. Physical methods have been developed for highly effective regional delivery. A series of innovative "smart" formulations directs the current development toward safe and effective systemic tumor-targeted delivery of pDNA and siRNA.

Journal ArticleDOI
TL;DR: The results confirm the safety profile and feasibility of direct injection of vaccinia virus expressing multiple costimulatory molecules in patients with established tumors and identify patients who failed to respond to vaccination but received high-dose interleukin-2 had a trend toward improved survival.
Abstract: Successful immunotherapy of established tumors depends on overcoming the suppressive influence of the local tumor microenvironment. The direct injection of vaccinia virus expressing the B7.1 (CD80) costimulatory molecule into melanoma lesions resulted in local and systemic immunity with associated clinical responses. Therefore, we sought to evaluate the effects of a vaccinia virus expressing three costimulatory molecules, B7.1, ICAM-1, and LFA-3 (rV-TRICOM), in patients with metastatic melanoma. A standard dose escalation phase I clinical trial was performed. Thirteen patients were enrolled and 12 were available for follow-up. Local vaccination was feasible, with only low-grade injection site reactions associated with mild fatigue and myalgia reported. There was one occurrence of grade 1 vitiligo. Overall there was a 30.7% objective clinical response, with one patient achieving a complete response for more than 22 months. An inverse association was detected between anti-vaccinia antibody and anti-vaccinia T cell responses. Patients who failed to respond to vaccination but received high-dose interleukin-2 had a trend toward improved survival. Collectively, these results confirm the safety profile and feasibility of direct injection of vaccinia virus expressing multiple costimulatory molecules in patients with established tumors. Further clinical investigation is needed to better define the role of antigen, adjuvant cytokines, costimulation, and cross-presentation in the host immune response to local vaccination with vaccinia viruses expressing immunomodulatory molecules.

Journal ArticleDOI
TL;DR: A novel role of kallistatin is indicated in cardiac protection after I/R injury through increased NO formation and Akt-glycogen synthase kinase-3beta signaling and suppression of oxidative stress and MAPK activation.
Abstract: Kallistatin is a serine proteinase inhibitor that has been shown to reduce joint swelling and to inhibit inflammation in a rat model of arthritis. In this study, we investigated the effect and mechanisms of kallistatin on cardiac function after myocardial ischemia–reperfusion (I/R) injury. The human kallistatin gene in an adenoviral vector was delivered locally into rat heart 4 days before 30-min ischemia followed by 24-hr reperfusion. Kallistatin gene transfer significantly reduced myocardial infarct size and left ventricle end-diastolic pressure and improved cardiac contractility. Kallistatin significantly reduced I/R-induced cardiomyocyte apoptosis as identified by TUNEL and Hoechst staining, DNA laddering, cell viability, and caspase-3 activity in ischemic myocardium and in primary cultured cardiomyocytes. Kallistatin also reduced intramyocardial monocyte/macrophage and neutrophil accumulation in conjunction with decreased expression of monocyte chemoattractant protein-1, tumor necrosis factor-α, and ...